Time Consistent Multi-period Robust Risk Measures and Portfolio Selection Models with Regime-switching

Zhiping Chen,
Xi’an Jiaotong University

TEL:029-82663741, E-mail: zchen@mail.xjtu.edu.cn
(Joint work with Jia Liu and Yongchang Hui)

Bergamo, May 20, 2016
Introduction
Outline

- Introduction
- Multi-period worst-case risk measure
Outline

- Introduction
- Multi-period worst-case risk measure
- Regime dependent multi-period robust risk measures

Xi’an Jiaotong University
Zhiping Chen
Outline

- Introduction
- Multi-period worst-case risk measure
- Regime dependent multi-period robust risk measures
- Application to portfolio selection problems
Outline

- Introduction
- Multi-period worst-case risk measure
- Regime dependent multi-period robust risk measures
- Application to portfolio selection problems
- Empirical illustrations
Outline

- Introduction
- Multi-period worst-case risk measure
- Regime dependent multi-period robust risk measures
- Application to portfolio selection problems
- Empirical illustrations
- Conclusions
Introduction

Traditional risk measure
Introduction

Traditional risk measure

- An aggregation function \(\rho : L_p(\Omega, \mathcal{F}, P) \rightarrow R \) with respect to the probability \(P \), here \(1 \leq p < \infty \)
Traditional risk measure

- An aggregation function \(\rho : L_p(\Omega, \mathcal{F}, P) \to R \) with respect to the probability \(P \), here \(1 \leq p < \infty \)

- CVaR can be described as follows:

\[
CVaR(x) = \inf_{\nu} \{ \nu + \epsilon^{-1} \mathbb{E}_P[x - \nu]_+ \},
\]

\(\epsilon \in (0, 1] \) is a given loss tolerant probability (say, 5%)
Introduction

Traditional risk measure

- An aggregation function $\rho : L_p(\Omega, \mathcal{F}, P) \rightarrow R$ with respect to the probability P, here $1 \leq p < \infty$

- CVaR can be described as follows:

\[
CVaR(x) = \inf_{\nu} \{\nu + \epsilon^{-1} \mathbb{E}_P[x - \nu]_+ \},
\]

$\epsilon \in (0,1]$ is a given loss tolerant probability (say, 5%)

★ The computation of risk measure relies on the underlying distribution P
Traditional distribution assumptions, such as normal or student’s t, does not fit the financial data well
Introduction (Cont’d)

- Traditional distribution assumptions, such as normal or student’s t, does not fit the financial data well.
- Fully distributional information is hardly known in practice.
Introduction (Cont’d)

- Traditional distribution assumptions, such as normal or student’s t, does not fit the financial data well
- Fully distributional information is hardly known in practice

Deal with the unknown distribution
Traditional distribution assumptions, such as normal or student’s t, does not fit the financial data well

Fully distributional information is hardly known in practice

Deal with the unknown distribution

Sample average approximation (Shapiro et al. [2009])
Introduction (Cont’d)

- Traditional distribution assumptions, such as normal or student’s t, does not fit the financial data well
- Fully distributional information is hardly known in practice

Deal with the unknown distribution

- Sample average approximation (Shapiro et al. [2009])
- Parametrical robust optimization (Bertsimas et al. [2011])
Introduction (Cont’d)

- Traditional distribution assumptions, such as normal or student’s t, does not fit the financial data well
- Fully distributional information is hardly known in practice

Deal with the unknown distribution

- Sample average approximation (Shapiro et al. [2009])
- Parametrical robust optimization (Bertsimas et al. [2011])
- Distributionally robust optimization (El Ghaoui et al. [2003])
Distributionally robust optimization
Distributionally robust optimization

- First proposed by Scarf (1958) and Žácková (1966)
Distributionally robust optimization

- First proposed by Scarf (1958) and Žácková (1966)

Typical uncertainty sets:
Distributionally robust optimization

- First proposed by Scarf (1958) and Žácková (1966)

Typical uncertainty sets:

- Box uncertainty (Natarajan et al., 2010)
Distributionally robust optimization

- First proposed by Scarf (1958) and Žácková (1966)

Typical uncertainty sets:
- Box uncertainty (Natarajan et al., 2010)
- Ellipsoidal uncertainty (Ermoliev et al., 1985)
Distributionally robust optimization

- First proposed by Scarf (1958) and Žácková (1966)

Typical uncertainty sets:

- Box uncertainty (Natarajan et al., 2010)
- Ellipsoidal uncertainty (Ermoliev et al., 1985)
- Mixture distribution uncertainty (Zhu and Fukushima, 2009)
Distributionally robust optimization

- First proposed by Scarf (1958) and Žácková (1966)

Typical uncertainty sets:

- Box uncertainty (Natarajan et al., 2010)
- Ellipsoidal uncertainty (Ermoliev et al., 1985)
- Mixture distribution uncertainty (Zhu and Fukushima, 2009)

Tractable transformation methods:
Distributionally robust optimization

- First proposed by Scarf (1958) and Žácková (1966)

Typical uncertainty sets:

- Box uncertainty (Natarajan et al., 2010)
- Ellipsoidal uncertainty (Ermoliev et al., 1985)
- Mixture distribution uncertainty (Zhu and Fukushima, 2009)

Tractable transformation methods:

- Second order cone programming
Distributionally robust optimization

- First proposed by Scarf (1958) and Žácková (1966)

Typical uncertainty sets:

- Box uncertainty (Natarajan et al., 2010)
- Ellipsoidal uncertainty (Ermoliev et al., 1985)
- Mixture distribution uncertainty (Zhu and Fukushima, 2009)

Tractable transformation methods:

- Second order cone programming
- Semi-definite programming
Worst-case risk measure
Worst-case risk measure

Estimate ρ by assuming P belongs to an uncertainty set \mathcal{P}. This gives us the following worst-case risk measure (Zhu and Fukoshima, 2009):
Worst-case risk measure

Estimate ρ by assuming P belongs to an uncertainty set \mathcal{P}. This gives us the following worst-case risk measure (Zhu and Fukoshima, 2009):

Definition

For given risk measure ρ, the worst-case risk measure with respect to \mathcal{P} is defined as $w\rho(x) \triangleq \sup_{P \in \mathcal{P}} \rho(x)$.
Worst-case risk measure

Estimate ρ by assuming P belongs to an uncertainty set \mathcal{P}. This gives us the following worst-case risk measure (Zhu and Fukushima, 2009):

Definition

For given risk measure ρ, the worst-case risk measure with respect to \mathcal{P} is defined as $w_\rho(x) \triangleq \sup_{P \in \mathcal{P}} \rho(x)$.

By constructing different uncertainty sets \mathcal{P}, we can derive different versions of worst-case risk measures.
Application of worst-case risk measures
Application of worst-case risk measures

- Lobo and Boyd [1999]: worst-case variance, variance uncertainty, transformed to semidefinite program
Application of worst-case risk measures

- Lobo and Boyd [1999]: worst-case variance, variance uncertainty, transformed to semi-definite program
- El Ghaoui et al. [2003]: worst-case VaR, mean and variance uncertainty, transformed to SOCP
Application of worst-case risk measures

- Lobo and Boyd [1999]: worst-case variance, variance uncertainty, transformed to semi-definite program
- El Ghaoui et al. [2003]: worst-case VaR, mean and variance uncertainty, transformed to SOCP
- Zhu and Fukushima [2009]: worst-case CVaR, mixture distribution uncertainty, transformed to linear or SOCP
Application of worst-case risk measures

- Lobo and Boyd [1999]: worst-case variance, variance uncertainty, transformed to semidefinite program
- El Ghaoui et al. [2003]: worst-case VaR, mean and variance uncertainty, transformed to SOCP
- Zhu and Fukushima [2009]: worst-case CVaR, mixture distribution uncertainty, transformed to linear or SOCP
- Chen et al. [2011]: worst-case LPM and worst-case CVaR, mean and variance uncertainty, transformed to SOCP
Application of worst-case risk measures

- Lobo and Boyd [1999]: worst-case variance, variance uncertainty, transformed to semi-definite program
- El Ghaoui et al. [2003]: worst-case VaR, mean and variance uncertainty, transformed to SOCP
- Zhu and Fukushima [2009]: worst-case CVaR, mixture distribution uncertainty, transformed to linear or SOCP
- Chen et al. [2011]: worst-case LPM and worst-case CVaR, mean and variance uncertainty, transformed to SOCP

★ Above studies are all in static case
Introduction (Cont’d)

Multi-period robust optimization
Multi-period robust optimization

- Robust Markov control (Ben-tal et al., 2009): transaction probability matrix uncertainty
Multi-period robust optimization

- Robust Markov control (Ben-tal et al., 2009): transaction probability matrix uncertainty
- Adjustable robust optimization (ARO): distribution uncertainty
Multi-period robust optimization

- Robust Markov control (Ben-tal et al., 2009): transaction probability matrix uncertainty
- Adjustable robust optimization (ARO): distribution uncertainty
 - ARO can be solved by dynamic programming technique (Shapiro, 2011)
Multi-period robust optimization

- Robust Markov control (Ben-tal et al., 2009): transaction probability matrix uncertainty

- Adjustable robust optimization (ARO): distribution uncertainty
 - ARO can be solved by dynamic programming technique (Shapiro, 2011)
 - ARO make a worst-case estimation at the current period on the basis of the worst-case estimation at the next period
Introduction (Cont’d)

Multi-period robust optimization

- Robust Markov control (Ben-tal et al., 2009): transaction probability matrix uncertainty

- Adjustable robust optimization (ARO): distribution uncertainty
 - ARO can be solved by dynamic programming technique (Shapiro, 2011)
 - ARO make a worst-case estimation at the current period on the basis of the worst-case estimation at the next period
 - ARO is excessively conservative
Multi-period robust optimization

- Robust Markov control (Ben-tal et al., 2009): transaction probability matrix uncertainty
- Adjustable robust optimization (ARO): distribution uncertainty
 - ARO can be solved by dynamic programming technique (Shapiro, 2011)
 - ARO make a worst-case estimation at the current period on the basis of the worst-case estimation at the next period
 - ARO is excessively conservative
- Tractability, time consistency
Proper: dynamic information process \rightarrow regime switching technique framework
Introduction (Cont’d)

Proper: dynamic information process \rightarrow regime switching technique framework

Our contributions
Introduction (Cont’d)

Proper: dynamic information process → regime switching technique framework

Our contributions

- Propose a new form of multi-period robust risk measure
Proper: dynamic information process → regime switching technique framework

Our contributions

- Propose a new form of multi-period robust risk measure
- Propose two kinds of regime-based robust risk measure
Proper: dynamic information process \rightarrow regime switching technique framework

Our contributions

- Propose a new form of multi-period robust risk measure
- Propose two kinds of regime-based robust risk measure
- Discuss the time consistency of the new measures
Introduction (Cont’d)

Proper: dynamic information process \rightarrow regime switching technique framework

Our contributions

- Propose a new form of multi-period robust risk measure
- Propose two kinds of regime-based robust risk measure
- Discuss the time consistency of the new measures
- Apply to multi-stage portfolio selection problems and derive their analytical optimal solution or find tractable transformation
Basic setting
Multi-period worst-case risk measure

Basic setting

- There are $T + 1$ time points and T periods
Basic setting

- There are $T + 1$ time points and T periods
- Random loss process $\{x_t, \ t = 0, 1, \cdots, T\}$ is defined on the probability space (Ω, \mathcal{F}, P), and adapted to the filtration $\mathcal{F}_t, \ t = 0, 1, \cdots, T$
Multi-period worst-case risk measure

Basic setting

- There are $T + 1$ time points and T periods
- Random loss process $\{x_t, t = 0, 1, \cdots T\}$ is defined on the probability space (Ω, \mathcal{F}, P), and adapted to the filtration $\mathcal{F}_t, t = 0, 1, \cdots, T$
- $\mathcal{F}_0 = \{0, \Omega\}$, and $\mathcal{F}_t \subseteq \mathcal{F}_{t+1}$, for $t = 0, 1, \cdots, T - 1$
Multi-period worst-case risk measure

Basic setting

- There are $T + 1$ time points and T periods
- Random loss process $\{x_t, t = 0, 1, \cdots, T\}$ is defined on the probability space (Ω, \mathcal{F}, P), and adapted to the filtration \mathcal{F}_t, $t = 0, 1, \cdots, T$
- $\mathcal{F}_0 = \{0, \Omega\}$, and $\mathcal{F}_t \subseteq \mathcal{F}_{t+1}$, for $t = 0, 1, \cdots, T - 1$
- $P_t := P|\mathcal{F}_t$
Multi-period worst-case risk measure

Basic setting

- There are $T + 1$ time points and T periods
- Random loss process $\{x_t, \ t = 0, 1, \cdots T\}$ is defined on the probability space (Ω, \mathcal{F}, P), and adapted to the filtration $\mathcal{F}_t, \ t = 0, 1, \cdots, T$
- $\mathcal{F}_0 = \{0, \Omega\}$, and $\mathcal{F}_t \subseteq \mathcal{F}_{t+1}$, for $t = 0, 1, \cdots, T - 1$
- $P_t := P|\mathcal{F}_t$
- $x_t \in \mathcal{L}_t = \mathcal{L}_p(\Omega, \mathcal{F}_t, P_t)$
Basic setting

- There are \(T + 1 \) time points and \(T \) periods
- Random loss process \(\{x_t, \ t = 0, 1, \cdots T\} \) is defined on the probability space \((\Omega, \mathcal{F}, P)\), and adapted to the filtration \(\mathcal{F}_t, \ t = 0, 1, \cdots, T \)
- \(\mathcal{F}_0 = \{0, \Omega\} \), and \(\mathcal{F}_t \subseteq \mathcal{F}_{t+1}, \text{ for } t = 0, 1, \cdots, T - 1 \)
- \(P_t := P|\mathcal{F}_t \)
- \(x_t \in \mathcal{L}_t = \mathcal{L}_p(\Omega, \mathcal{F}_t, P_t) \)
- \(\mathcal{L}_{t,T} = \mathcal{L}_t \times \cdots \times \mathcal{L}_T \)
Basic setting

- There are $T + 1$ time points and T periods.
- Random loss process $\{x_t, \ t = 0, 1, \cdots, T\}$ is defined on the probability space (Ω, \mathcal{F}, P), and adapted to the filtration $\mathcal{F}_t, \ t = 0, 1, \cdots, T$.
- $\mathcal{F}_0 = \{0, \Omega\}$, and $\mathcal{F}_t \subseteq \mathcal{F}_{t+1}$, for $t = 0, 1, \cdots, T - 1$.
- $P_t := P|\mathcal{F}_t$.
- $x_t \in \mathcal{L}_t = \mathcal{L}_p(\Omega, \mathcal{F}_t, P_t)$.
- $\mathcal{L}_{t,T} = \mathcal{L}_t \times \cdots \times \mathcal{L}_T$.
- $x_{t,T} = (x_t, \cdots, x_T) \in \mathcal{L}_{t,T}$.
Typical multi-period risk measure

Considering the distributional uncertainty
\[\text{At each period } t, P_t \text{ is required to belong to an uncertainty set } P_t \text{ which contains all possible probability distributions of random loss } x_t \text{ and is observable at time point } t-1.\]

\[\text{\star P_1, P_2, \ldots, P_T are mutually independent.}\]
Typical multi-period risk measure

- A conditional mapping \(\rho_{t,T}(\cdot) : L_{t+1,T} \rightarrow L_t \)
Multi-period worst-case risk measure (Cont’d)

Typical multi-period risk measure

- A conditional mapping $\rho_{t,T}(\cdot) : \mathcal{L}_{t+1,T} \rightarrow \mathcal{L}_t$
- Separable expected conditional (SEC) mapping:

$$
\rho_{t,T}(x_{t+1,T}) = \sum_{i=t+1}^{T} \mathbb{E}_P \left[\rho_{i,F_{i-1}}(x_i) | F_t \right], \quad t = 0, 1, \cdots, T - 1.
$$
Typical multi-period risk measure

- A conditional mapping $\rho_{t,T}(\cdot) : \mathcal{L}_{t+1,T} \rightarrow \mathcal{L}_t$
- Separable expected conditional (SEC) mapping:

$$\rho_{t,T}(x_{t+1,T}) = \sum_{i=t+1}^{T} \mathbb{E}_{P_t} \left[\rho_{i|\mathcal{F}_{i-1}}(x_i) | \mathcal{F}_t \right], \quad t = 0, 1, \cdots, T - 1.$$

Considering the distributional uncertainty

\[\star \]

At each period t, P_t is required to belong to an uncertainty set \mathcal{P}_t which contains all possible probability distributions of random loss x_t and is observable at time point $t - 1$.

\[\star \]

P_1, P_2, \cdots, P_T are mutually independent.
Typical multi-period risk measure

- A conditional mapping $\rho_{t,T}(\cdot) : \mathcal{L}_{t+1,T} \rightarrow \mathcal{L}_t$
- Separable expected conditional (SEC) mapping:

$$\rho_{t,T}(x_{t+1,T}) = \sum_{i=t+1}^{T} \mathbb{E}_{P_t} \left[\rho_{i|F_{i-1}}(x_i) | F_t \right], \ t = 0, 1, \cdots, T - 1.$$

Considering the distributional uncertainty

- At each period t, P_t is required to belong to an uncertainty set \mathcal{P}_t which contains all possible probability distributions of random loss x_t and is observable at time point $t - 1$.

Xi’an Jiaotong University

Zhiping Chen
Typical multi-period risk measure

- A conditional mapping $\rho_{t,T}(\cdot) : \mathcal{L}_{t+1,T} \to \mathcal{L}_t$
- Separable expected conditional (SEC) mapping:

$$
\rho_{t,T}(x_{t+1,T}) = \sum_{i=t+1}^{T} \mathbb{E}_{\mathcal{P}_t} \left[\rho_{i|\mathcal{F}_{i-1}}(x_i) | \mathcal{F}_t \right], \ t = 0, 1, \cdots, T - 1.
$$

Considering the distributional uncertainty

- At each period t, \mathcal{P}_t is required to belong to an uncertainty set \mathcal{P}_t which contains all possible probability distributions of random loss x_t and is observable at time point $t - 1$.
- $\mathcal{P}_1, \mathcal{P}_2, \cdots, \mathcal{P}_T$ are mutually independent.
We obtain a robust estimation of the one-period conditional risk at period t: \(\sup_{P_t \in \mathcal{P}_t} \rho_{t|F_{t-1}} (x_t) \)
We obtain a robust estimation of the one-period conditional risk at period t: $\sup_{P_t \in \mathcal{P}_t} \rho_t |F_{t-1}(x_t)$

Then all the estimations of risks at different periods are added together with respect to their conditional expectations.
We obtain a robust estimation of the one-period conditional risk at period t: $\sup_{P_t \in \mathcal{P}_t} \rho_{t|F_{t-1}}(x_t)$

Then all the estimations of risks at different periods are added together with respect to their conditional expectations
Multi-period worst-case risk measure (Cont’d)

- We obtain a robust estimation of the one-period conditional risk at period t: $\sup_{P_t \in \mathcal{P}_t} \rho |F_{t-1} (x_t) $

- Then all the estimations of risks at different periods are added together with respect to their conditional expectations

\Rightarrow This gives us the multi-period worst-case risk measure.
Worst case risk measure

For $t = 0, 1, \cdots, T - 1$ and $x_{t+1,T} \in \mathcal{L}_{t+1,T}$,

$$w_{\rho_t,T}(x_{t+1,T}) = \sum_{i=t+1}^{T} \mathbb{E}_{P_i} \left[\sup_{P_i \in \mathcal{P}_i} \rho_i |F_{i-1}(x_i) \right] | \mathcal{F}_t$$

is called the conditional worst-case risk mapping. The sequence of the risk mappings $\{w_{\rho_t,T}\}_{t=0}^{T-1}$ is called the multi-period worst-case risk measure.
Multi-period worst-case risk measure (Cont’d)

Dynamic formulation
Dynamic formulation

\[w\rho_{t, T}(x_{t, T}) = \left(\sup_{P_t \in \mathcal{P}_t} \rho_t |\mathcal{F}_{t-1}(x_t) \right) + \mathbb{E}_{P_{t-1}} \left[w\rho_{t, T}(x_{t+1, T}) |\mathcal{F}_{t-1} \right], \quad t = 1, 2, \cdots, T. \]
Multi-period worst-case risk measure (Cont’d)

Dynamic formulation

\[w\rho_{t-1,T}(x_{t,T}) = \left(\sup_{P_t \in \mathcal{P}_t} \rho_t|\mathcal{F}_{t-1}(x_t) \right) + \mathbb{E}_{P_{t-1}} \left[w\rho_{t,T}(x_{t+1,T})|\mathcal{F}_{t-1} \right], \quad t = 1, 2, \cdots, T. \]

Compared with the adjustable robust optimization (ARO)

Compared with the adjustable robust optimization (ARO): makes worst-case estimation for both two parts. ⇒ The worst-case estimation will not be cumulated to the earlier period. Not that conservative than ARO.
Multi-period worst-case risk measure (Cont’d)

Dynamic formulation

\[w \rho_{t-1,T}(x_{t,T}) = \left(\sup_{P_t \in \mathcal{P}_t} \rho_t | F_{t-1} (x_t) \right) + \mathbb{E}_{P_{t-1}} \left[w \rho_{t,T}(x_{t+1,T}) | F_{t-1} \right], \ t = 1, 2, \cdots, T. \]

Compared with the adjustable robust optimization (ARO)

- \(w \rho \): makes worst-case estimation for the first part only
Multi-period worst-case risk measure (Cont’d)

Dynamic formulation

\[w\rho_{t-1,T}(x_{t,T}) = \left(\sup_{P_t \in \mathcal{P}_t} \rho_{t|\mathcal{F}_{t-1}}(x_t) \right) + \mathbb{E}_{P_{t-1}} \left[w\rho_{t,T}(x_{t+1,T})|\mathcal{F}_{t-1} \right], \quad t = 1, 2, \ldots, T. \]

Compared with the adjustable robust optimization (ARO)

- \(w\rho \): makes worst-case estimation for the first part only
- ARO: makes worst-case estimation for both two parts
Multi-period worst-case risk measure (Cont’d)

Dynamic formulation

\[
wrho_{t-1,T}(x_{t,T}) = \left(\sup_{P_t \in \mathcal{P}_t} \rho_t|F_{t-1}(x_t) \right) + \mathbb{E}_{P_{t-1}} \left[wrho_{t,T}(x_{t+1,T})|F_{t-1} \right], \; t = 1, 2, \cdots, T.
\]

Compared with the adjustable robust optimization (ARO)

- \(wrho\): makes worst-case estimation for the first part only
- ARO: makes worst-case estimation for both two parts

⇒
Dynamic formulation

\[w\rho_{t-1,T}(x_t,T) = \left(\sup_{P_t \in \mathcal{P}_t} \rho_t|\mathcal{F}_{t-1}(x_t) \right) + \mathbb{E}_{P_{t-1}} \left[w\rho_{t,T}(x_{t+1},T)|\mathcal{F}_{t-1} \right], \quad t = 1, 2, \ldots, T. \]

Compared with the adjustable robust optimization (ARO)

- \(w\rho \): makes worst-case estimation for the first part only
- ARO: makes worst-case estimation for both two parts

\[\Rightarrow \] The worst-case estimation will not be cumulated to the earlier period.
Multi-period worst-case risk measure (Cont’d)

Dynamic formulation

\[w\rho_{t-1,T}(x_{t,T}) = \left(\sup_{P_t \in \mathcal{P}_t} \rho_t |\mathcal{F}_{t-1}(x_t) \right) + \mathbb{E}_{P_{t-1}} \left[w\rho_{t,T}(x_{t+1,T}) |\mathcal{F}_{t-1} \right] , \quad t = 1, 2, \ldots, T. \]

Compared with the adjustable robust optimization (ARO)

- \(w\rho \): makes worst-case estimation for the first part only
- ARO: makes worst-case estimation for both two parts

\[\Rightarrow \text{The worst-case estimation will not be cumulated to the earlier period. Not that conservative than ARO.} \]
Time consistency

If $\rho_t|\mathcal{F}_{t-1}$ associated with the any probability distribution $P_t \in \mathcal{P}_t$ is monotone, $t = 1, 2, \cdots, T$, then the corresponding multi-period worst-case risk measure $\{w\rho_{t,T}\}_{t=0}^{T-1}$ is time consistent.
Multi-period worst-case risk measure (Cont’d)

Time consistency

If $\rho_{t|F_{t-1}}$ associated with the any probability distribution $P_t \in \mathcal{P}_t$ is monotone, $t = 1, 2, \cdots, T$, then the corresponding multi-period worst-case risk measure $\{w\rho_{t,T}\}_{t=0}^{T-1}$ is time consistent.

Coherency

If $\rho_{t|F_{t-1}}$ associated with any probability distribution $P_t \in \mathcal{P}_t$ is coherent, the corresponding multi-period worst-case risk measure is dynamic coherent.
Regime-dependent risk measure

Regime switching

Regime-dependent robust risk measures

Introduction Multi-period worst-case risk measure Risk measures

Xi’an Jiaotong University Zhiping Chen
Regime-dependent robust risk measures

Regime-dependent risk measure

Regime switching

- Regime switching can reflect dynamic correlations of return rates in different economic cycles.
Regime-dependent risk measure

Regime switching

- Regime switching can reflect dynamic correlations of return rates in different economic cycles.
- The regime process is \(s_1, \ldots, s_T \).
Regime-dependent risk measure

Regime switching

- Regime switching can reflect dynamic correlations of return rates in different economic cycles.
- The regime process is s_1, \cdots, s_T.
- Possible regimes are s^1, s^2, \cdots, s^J.

Stationary Markovian chain with the following transition probability matrix:

$$Q = \begin{pmatrix}
Q_{s_i s_i} & Q_{s_i s_{i+1}} & \cdots & Q_{s_i s_J} \\
Q_{s_{i+1} s_i} & Q_{s_{i+1} s_{i+1}} & \cdots & Q_{s_{i+1} s_J} \\
\vdots & \vdots & \ddots & \vdots \\
Q_{s_J s_i} & Q_{s_J s_{i+1}} & \cdots & Q_{s_J s_J}
\end{pmatrix}.$$
Regime-dependent risk measure

Regime switching

- Regime switching can reflect dynamic correlations of return rates in different economic cycles.
- The regime process is \(s_1, \ldots, s_T \).
- Possible regimes are \(s^1, s^2, \ldots, s^J \).
- Stationary Markovian chain with the following transition probability matrix:
Regime switching

- Regime switching can reflect dynamic correlations of return rates in different economic cycles.
- The regime process is s_1, \cdots, s_T.
- Possible regimes are s^1, s^2, \cdots, s^J.
- Stationary Markovian chain with the following transition probability matrix:

$$Q = \begin{pmatrix}
Q_{s^1 s^1} & Q_{s^1 s^2} & \cdots & Q_{s^1 s^J} \\
Q_{s^2 s^1} & Q_{s^2 s^2} & \cdots & Q_{s^2 s^J} \\
\vdots & \vdots & \ddots & \vdots \\
Q_{s^J s^1} & Q_{s^J s^2} & \cdots & Q_{s^J s^J}
\end{pmatrix}. $$
Product space
Regime-dependent robust risk measures

Regime-dependent risk measure (Cont’d)

Product space

- Regime process belongs to (S, S, Q), and the corresponding filtration it generates is $S_0 \subseteq S_1 \subseteq \cdots \subseteq S_T$.
Product space

- Regime process belongs to \((S, S, Q)\), and the corresponding filtration it generates is \(S_0 \subseteq S_1 \subseteq \cdots \subseteq S_T\).
- Consider \(\{x_t, \ t = 0, 1, \cdots, T\}\) on the product space \((\Omega \times S, \mathcal{F} \times S, P \times Q)\).
Product space

- Regime process belongs to \((S, S, Q)\), and the corresponding filtration it generates is \(S_0 \subseteq S_1 \subseteq \cdots \subseteq S_T\).

- Consider \(\{x_t, \ t = 0, 1, \cdots, T\}\) on the product space \((\Omega \times S, \mathcal{F} \times S, P \times Q)\).

- At each period \(t, \ t = 0, 1, \cdots, T\), \(x_t\) is adapted to the filtration \(\mathcal{F}_t \times S_t\).
Product space

- Regime process belongs to \((S, S, Q)\), and the corresponding filtration it generates is \(S_0 \subseteq S_1 \subseteq \cdots \subseteq S_T\).
- Consider \(\{x_t, \ t = 0, 1, \cdots, T\}\) on the product space \((\Omega \times S, \mathcal{F} \times S, P \times Q)\).
- At each period \(t, t = 0, 1, \cdots, T\), \(x_t\) is adapted to the filtration \(\mathcal{F}_t \times S_t\).
- From the stationary assumption for \(s_t\), we know that \(Q|S_T \equiv Q|S_t\).
Product space

- Regime process belongs to \((S, S, Q)\), and the corresponding filtration it generates is \(S_0 \subseteq S_1 \subseteq \cdots \subseteq S_T\).
- Consider \(\{x_t, \ t = 0, 1, \cdots, T\}\) on the product space \((\Omega \times S, F \times S, P \times Q)\).
- At each period \(t, t = 0, 1, \cdots, T\), \(x_t\) is adapted to the filtration \(F_t \times S_t\).
- From the stationary assumption for \(s_t\), we know that \(Q|S_T \equiv Q|S_t\).
Regime-dependent robust risk measures

Product space

- Regime process belongs to \((S, S, Q)\), and the corresponding filtration it generates is \(S_0 \subseteq S_1 \subseteq \cdots \subseteq S_T\).
- Consider \(\{x_t, \ t = 0, 1, \cdots, T\}\) on the product space \((\Omega \times S, \mathcal{F} \times S, P \times Q)\).
- At each period \(t, t = 0, 1, \cdots, T\), \(x_t\) is adapted to the filtration \(\mathcal{F}_t \times S_t\).
- From the stationary assumption for \(s_t\), we know that \(Q|S_\tau \equiv Q|S_t\).

\[\Rightarrow x_t \in L_p(\Omega \times S, \mathcal{F}_t \times S_t, P_t \times Q), \ p \geq 2.\]
To distinguish the influence of \mathcal{F}_t and that of S_t.
To distinguish the influence of \(F_t \) and that of \(S_t \).

Conditional risk mapping
To distinguish the influence of \mathcal{F}_t and that of S_t.

Conditional risk mapping

$$\rho_{t-1,t}(\cdot) : L_p(\Omega \times S, \mathcal{F}_t \times S_t, P_t \times Q) \rightarrow L_p(\Omega \times S, \mathcal{F}_{t-1} \times S_{t-1}, P_{t-1} \times Q)$$

We separate $\rho_{t-1,t}(\cdot)$ into **two levels:**
Regime-dependent risk measure (Cont’d)

To distinguish the influence of \mathcal{F}_t and that of S_t.

Conditional risk mapping

$$\rho_{t-1,t}(\cdot) : L_p(\Omega \times S, \mathcal{F}_t \times S_t, P_t \times Q) \to L_p(\Omega \times S, \mathcal{F}_{t-1} \times S_{t-1}, P_{t-1} \times Q)$$

We separate $\rho_{t-1,t}(\cdot)$ into two levels:

- The conditional risk mapping under given regime s_t,

 $$\rho_{t|\mathcal{F}_{t-1}}(\cdot) : L_p(\Omega \times S, \mathcal{F}_t \times S_t, P_t \times Q) \to L_p(\Omega \times S, \mathcal{F}_{t-1} \times S_t, P_{t-1} \times Q)$$
To distinguish the influence of \mathcal{F}_t and that of S_t.

Conditional risk mapping

$$\rho_{t-1,t}(\cdot) : L_p(\Omega \times S, \mathcal{F}_t \times S_t, P_t \times Q) \rightarrow L_p(\Omega \times S, \mathcal{F}_{t-1} \times S_{t-1}, P_{t-1} \times Q)$$

We separate $\rho_{t-1,t}(\cdot)$ into two levels:

- The conditional risk mapping under given regime s_t,
 $$\rho_{t|\mathcal{F}_{t-1}}(\cdot) : L_p(\Omega \times S, \mathcal{F}_t \times S_t, P_t \times Q) \rightarrow L_p(\Omega \times S, \mathcal{F}_{t-1} \times S_t, P_{t-1} \times Q)$$

- The regime-dependent risks are combined by $g_t(\cdot)$:
 $$L_p(\Omega \times S, \mathcal{F}_{t-1} \times S_t, P_{t-1} \times Q) \rightarrow L_p(\Omega \times S, \mathcal{F}_{t-1} \times S_{t-1}, P_{t-1} \times Q)$$
Distributionally robust counterpart
Distributionally robust counterpart

- The uncertainty set $\mathcal{P}_t(s_t)$ at period t is associated with the regime $s_t \in S_t$.
Distributionally robust counterpart

- The uncertainty set $\mathcal{P}_t(s_t)$ at period t is associated with the regime $s_t \in S_t$.
- With respect to the regime based uncertainty set, the worst-case estimation of the one-period risk at period t is
 \[w\rho_{s_t}(x_t) = \sup_{P_t \in \mathcal{P}_t(s_t)} \rho_t | F_{t-1} (x_t), \]
Distributionally robust counterpart

- The uncertainty set $\mathcal{P}_t(s_t)$ at period t is associated with the regime $s_t \in S_t$.

- With respect to the regime based uncertainty set, the worst-case estimation of the one-period risk at period t is

$$w\rho_{s_t}(x_t) = \sup_{P_t \in \mathcal{P}_t(s_t)} \rho_t|\mathcal{F}_{t-1}(x_t),$$

Multi-period worst-regime risk measure: find the worst-regime, and the multi-period robust risk measures are formulated in a SEC way.
Regime-dependent risk measure (Cont’d)

Multi-period worst-regime risk measure

For $t = 0, 1, \cdots, T - 1$ and $x_{t+1,T} \in \mathcal{L}_{t+1,T}$,

$$wr\rho_{t,T}(x_{t+1,T}; s_t) = \sum_{i=t+1}^{T} \mathbb{E} \left[\sup_{s_i \in S_i} \sup_{P_i \in \mathcal{P}_i(s_i)} \rho_{i|F_{i-1}}(x_i) \middle| F_t \times S_t \right]$$

is called the conditional worst-regime risk mapping. And the sequence of the conditional worst-regime risk mappings $\{wr\rho_{t,T}\}_{t=0}^{T-1}$ is called the multi-period worst-regime risk measure.
Regime-dependent risk measure (Cont’d)

Multi-period worst-regime risk measure

For $t = 0, 1, \cdots, T - 1$ and $x_{t+1,T} \in \mathcal{L}_{t+1,T}$,

$$wr_\rho_{t,T}(x_{t+1,T}; s_t) = \sum_{i=t+1}^{T} \mathbb{E} \left[\sup_{s_i \in S_i} \sup_{P_i \in \mathcal{P}_i(s_i)} \rho_{i|F_{i-1}}(x_i) \middle| F_t \times S_t \right]$$

is called the conditional worst-regime risk mapping. And the sequence of the conditional worst-regime risk mappings $\{wr_\rho_{t,T}\}_{t=0}^{T-1}$ is called the multi-period worst-regime risk measure.

wr_ρ cares about the worst regime and ignores other regimes, a very conservative risk evaluation.
Multi-period worst-regime risk measure

For $t = 0, 1, \ldots, T - 1$ and $x_{t+1,T} \in \mathcal{L}_{t+1,T},$

$$w_{t,T}(x_{t+1,T}; s_t) = \sum_{i=t+1}^{T} \mathbb{E} \left[\sup_{s_i \in S_i} \sup_{P_i \in \mathcal{P}_i(s_i)} \rho_i|\mathcal{F}_{i-1}(x_i)\right]_{\mathcal{F}_t \times \mathcal{S}_t}$$

is called the conditional worst-regime risk mapping. And the sequence of the conditional worst-regime risk mappings $\{w_{t,T}\}_{t=0}^{T-1}$ is called the multi-period worst-regime risk measure.

$w_{t,T}$ cares about the worst regime and ignores other regimes, a very conservative risk evaluation.

⇒

Xi'an Jiaotong University Zhiping Chen
Multi-period worst-regime risk measure

For $t = 0, 1, \cdots, T - 1$ and $x_{t+1,T} \in \mathcal{L}_{t+1,T}$,

$$wr_\rho_{t,T}(x_{t+1,T}; s_t) = \sum_{i=t+1}^{T} \mathbb{E} \left[\sup_{s_i \in S_i} \sup_{P_i \in \mathcal{P}_i(s_i)} \rho_{i|F_{i-1}}(x_i) \bigg| F_t \times S_t \right]$$

is called the conditional worst-regime risk mapping. And the sequence of the conditional worst-regime risk mappings $\{wr_\rho_{t,T}\}_{t=0}^{T-1}$ is called the multi-period worst-regime risk measure.

wr_ρ cares about the worst regime and ignores other regimes, a very conservative risk evaluation.

\Rightarrow Weight all sub worst-case risk measures under different regimes.
Multi-period mixed worst-case risk measure

For \(t = 0, 1, \ldots, T - 1 \) and \(x_{t+1,T} \in \mathcal{L}_{t+1,T} \),

\[
mw\rho_{t,T}(x_{t+1,T}; s_t) = \sum_{i=t+1}^{T} E \left[E \left[\sup_{P_i \in \mathcal{P}_i(s_i)} \rho_i | \mathcal{F}_{i-1}(x_i) | S_{i-1} \left| \mathcal{F}_t \times S_t \right. \right] \right]
\]

is called the conditional mixed worst-case risk mapping. And the sequence of the conditional mixed worst-case risk mappings \(\{mw\rho_{t,T}\}_{t=0}^{T-1} \) is called the multi-period mixed worst-case risk measure.
Multi-period mixed worst-case risk measure

For \(t = 0, 1, \cdots, T - 1 \) and \(x_{t+1,T} \in \mathcal{L}_{t+1,T} \),

\[
mw\rho_{t,T}(x_{t+1,T}; s_t) = \sum_{i=t+1}^{T} \mathbb{E} \left[\mathbb{E} \left[\sup_{P_i \in \mathcal{P}_i(s_i)} \rho_i|\mathcal{F}_{i-1}(x_i)|S_{i-1} \right] | F_t \times S_t \right]
\]

is called the conditional mixed worst-case risk mapping. And the sequence of the conditional mixed worst-case risk mappings \(\{mw\rho_{t,T}\}_{t=0}^{T-1} \) is called the multi-period mixed worst-case risk measure.

\(mw\rho \) takes the information under all regimes into consideration.
Dynamic formulations
Dynamic formulations

\[\text{wr} \rho_{t-1,T}(x_{t,T}; s_{t-1}) = \left(\sup_{s_t \in S_t} \left(\sup_{P_t \in \mathcal{P}_t(s_t)} \rho_t|\mathcal{F}_{t-1}(x_t) \right) \right) + \mathbb{E} \left[\text{wr} \rho_{t,T}(x_{t+1,T}; s_t)|\mathcal{F}_{t-1} \times S_{t-1} \right], t = 1, 2, \cdots, T. \]
Regime-dependent risk measure (Cont’d)

Dynamic formulations

\[wr\rho_{t-1,T}(x_t,T; s_{t-1}) = \left(\sup_{s_t \in S_t} \left(\sup_{P_t \in \mathcal{P}_t(s_t)} \rho_t|\mathcal{F}_{t-1}(x_t) \right) \right) + \mathbb{E}\left[wr\rho_{t,T}(x_{t+1},T; s_t)|\mathcal{F}_{t-1} \times S_{t-1} \right], \ t = 1, 2, \cdots, T. \]

\[mw\rho_{t-1,T}(x_t,T; s_{t-1}) = \left(\mathbb{E}\left[\sup_{P_t \in \mathcal{P}_t(s_t)} \rho_t|\mathcal{F}_{t-1}(x_t)|S_{t-1} \right] \right) + \mathbb{E}\left[mw\rho_{t,T}(x_{t+1},T; s_t)|\mathcal{F}_{t-1} \times S_{t-1} \right], \ t = 1, 2, \cdots, T. \]
Regime-dependent robust risk measures

Introduction
Multi-period worst-case risk measure
Risk measures
Applications
Empirical illustrations
Conclusions

Regime-dependent risk measure (Cont’d)

Dynamic formulations

\[
wr\rho_{t-1,T}(x_t,T; s_{t-1}) = \left(\sup_{s_t \in S_t} \left(\sup_{P_t \in P_t(s_t)} \rho_{t|F_{t-1}}(x_t) \right) \right) \\
+ \mathbb{E} \left[wr\rho_{t,T}(x_{t+1},T; s_t)|F_{t-1} \times S_{t-1} \right], t = 1, 2, \cdots, T.
\]

\[
mw\rho_{t-1,T}(x_t,T; s_{t-1}) = \left(\mathbb{E} \left[\sup_{P_t \in P_t(s_t)} \rho_{t|F_{t-1}}(x_t)|S_{t-1} \right] \right) \\
+ \mathbb{E} \left[mw\rho_{t,T}(x_{t+1},T; s_t)|F_{t-1} \times S_{t-1} \right], t = 1, 2, \cdots, T.
\]

⇒
Regime-dependent robust risk measure (Cont’d)

Dynamic formulations

\[wr\rho_{t-1,T}(x_t,T; s_{t-1}) = \left(\sup_{s_t \in S_t} \left(\sup_{P_t \in \mathcal{P}_t(s_t)} \rho_t|\mathcal{F}_{t-1}(x_t) \right) \right) \]
\[+ \mathbb{E} [wr\rho_t,T(x_{t+1},T; s_t)|\mathcal{F}_{t-1} \times S_{t-1}] , t = 1, 2, \cdots , T. \]

\[mw\rho_{t-1,T}(x_t,T; s_{t-1}) = \left(\mathbb{E} \left[\sup_{P_t \in \mathcal{P}_t(s_t)} \rho_t|\mathcal{F}_{t-1}(x_t)|S_{t-1} \right] \right) \]
\[+ \mathbb{E} [mw\rho_t,T(x_{t+1},T; s_t)|\mathcal{F}_{t-1} \times S_{t-1}] , t = 1, 2, \cdots , T. \]

⇒ time consistency of the two multi-period robust risk measures.
Multi-period robust portfolio selection model under wCVaR (Mean-wCVaR model)

Market setting
Multi-period robust portfolio selection model under wCVaR (Mean-wCVaR model)

Market setting

- There are n risky assets in the security market
Multi-period robust portfolio selection model under wCVaR (Mean-wCVaR model)

Market setting

- There are \(n \) risky assets in the security market
- \(r_t = [r_t^1, \cdots, r_t^n]^\top \): the random return rates at period \(t \)
Market setting

- There are n risky assets in the security market
- $r_t = [r^1_t, \cdots, r^n_t]^\top$: the random return rates at period t
- $u_{t-1} = [u^1_{t-1}, \cdots, u^n_{t-1}]^\top$: the vector of cash amounts invested in the risky assets at the beginning of period t
Multi-period robust portfolio selection model under wCVaR (Mean-wCVaR model)

Market setting

- There are n risky assets in the security market
- $r_t = [r_t^1, \cdots, r_t^n]^\top$: the random return rates at period t
- $u_{t-1} = [u_{t-1}^1, \cdots, u_{t-1}^n]^\top$: the vector of cash amounts invested in the risky assets at the beginning of period t

$$
\mathcal{P}_t = \left\{ P \left| \mathbb{E}_{P_{t-1}}[r_t] = \mu_t, \text{Cov}_{P_{t-1}}[r_t] = \Gamma_t \right. \right\}.
$$
Mean-wCVaR model

We consider a multi-criteria approach with respect to the expected final wealth and wCVaR measure as follows:
We consider a multi-criteria approach with respect to the expected final wealth and wCVaR measure as follows:

\[
\begin{align*}
\max_{u} & \quad \mathbb{E}[w_T] - \lambda \cdot \sum_{t=1}^{T} \mathbb{E}\left[\sup_{P_t \in \mathcal{P}_t} \text{CVaR}_{t|F_{t-1}}(-w_t) \right], \\
\text{s.t.} & \quad e^T u_{t-1} = w_{t-1}, \quad t = 1, \cdots, T. \\
& \quad r_t^T u_{t-1} = w_t, \quad t = 1, \cdots, T.
\end{align*}
\]

Here, \(e^T = [1, \cdots, 1]^T\). \(\lambda\) is the risk aversion coefficient.
Mean-wCVaR model

We consider a multi-criteria approach with respect to the expected final wealth and wCVaR measure as follows:

\[
\max_u \mathbb{E}[w_T] - \lambda \cdot \sum_{t=1}^{T} \mathbb{E}\left[\sup_{P_t \in \mathcal{P}_t} \text{CVaR}_{t|\mathcal{F}_{t-1}}(-w_t) \right],
\]

s.t. \quad e^T u_{t-1} = w_{t-1}, \quad t = 1, \cdots, T.

\quad r_t^T u_{t-1} = w_t, \quad t = 1, \cdots, T.

Here, \(e = [1, \cdots, 1]^T \). \(\lambda \) is the risk aversion coefficient.
Mean-wCVaR model (Cont’d)

With the following notations:
With the following notations:

\[a_t = e^\top \Gamma_t^{-1} e, \quad b_t = e^\top \Gamma_t^{-1} \mu_t, \quad c_t = \mu_t^\top \Gamma_t^{-1} \mu_t, \]

\[\kappa_t = \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}, \quad t = 1, \cdots, T, \quad z_T = 1, \]

\[z_{t-1} = (\lambda + z_t)d_t - \lambda \kappa_t \sqrt{\frac{1}{a_t c_t - b_t^2}}(c_t^2 - 2b_t s_t + a_t s_t^2), \quad t = 2, \cdots, T, \]

\[h_t = \left(\frac{\lambda \kappa_t}{\lambda + z_t} \right)^2 \frac{1}{a_t c_t - b_t^2}, \quad \Delta_t = 4(h_t a_t - 1)(a_t c_t - b_t^2), \]

\[d_t = \frac{2b(a_t h_t - 1) + \sqrt{\Delta_t}}{2a_t(a_t h_t - 1)}, \quad t = 1, \cdots, T. \]
Mean-wCVaR model (Cont’d)

With the following notations:

\[a_t = e^\top \Gamma_t^{-1} e, \quad b_t = e^\top \Gamma_t^{-1} \mu_t, \quad c_t = \mu_t^\top \Gamma_t^{-1} \mu_t, \]
\[\kappa_t = \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}, \quad t = 1, \cdots, T, \quad z_T = 1, \]
\[z_{t-1} = (\lambda + z_t)d_t - \lambda \kappa_t \sqrt{\frac{1}{a_tc_t - b_t^2}(c_t^2 - 2b_ts_t + a_ts_t^2)}, \quad t = 2, \cdots, T, \]
\[h_t = \left(\frac{\lambda \kappa_t}{\lambda + z_t} \right)^2 \frac{1}{a_tc_t - b_t^2}, \quad \Delta_t = 4(h_ta_t - 1)(a_tc_t - b_t^2), \]
\[d_t = \frac{2b(a_th_t - 1) + \sqrt{\Delta_t}}{2a_t(a_th_t - 1)}, \quad t = 1, \cdots, T. \]

we can solve the mean-wCVaR problem analytically.
Theorem

Suppose that the wealth \(w_t \) at each period \(t \) is non-negative, and the investor is risk averse such that \(\lambda + z_t \) is always non-negative. Then, if \(a_t h_t - 1 \geq 0 \) for all \(t = 1, \cdots, T \), the optimal investment policy for problem (4)-(6) is

\[
 u_{t-1} = \left(\Gamma_t^{-1} e \Gamma_t^{-1} \mu_t \right) \frac{1}{a_t c_t - b_t^2} \begin{pmatrix} c_t & -b_t \\ -b_t & a_t \end{pmatrix} \begin{pmatrix} 1 \\ d_t \end{pmatrix} w_{t-1}, \ t = 1, \cdots, T.
\]

If \(a_t h_t - 1 < 0 \) for some \(t, 1 \leq t \leq T \), the optimal portfolio at period \(t - 1 \) trends to infinity, and the problem (4)-(6) is unbounded.
Mean-mwCVaR and mean-wrCVaR models

The mean-mwCVaR model with transaction costs and market restriction constraints.
Mean-mwCVaR and mean-wrCVaR models

The mean-mwCVaR model with transaction costs and market restriction constraints.

$$\max_u \left\{ \mathbb{E}[w_T; s_0] - \lambda \cdot mwCVaR_{0,T}(-w_{1,T}; s_0) \right\},$$

s.t.
$$w_0 = u_0^\top e + \alpha^\top (u_0)^+ + \beta^\top (u_0)^-, \quad w_t = u_t^\top e + \alpha^\top (u_t - u_{t-1})^+ + \beta^\top (u_t - u_{t-1})^-, \quad t = 1, \cdots, T - 1,$$

$$w_{t+1} = u_t^\top r_{t+1}, \quad t = 0, \cdots, T - 1,$$

$$\underline{u} \leq u_t \leq \bar{u}, \quad t = 0, \cdots, T - 1,$$
The mean-wrCVaR model with transaction costs and market restriction constraints.
Mean-mwCVaR and mean-wrCVaR models

The **mean-wrCVaR model** with transaction costs and market restriction constraints.

\[
\begin{align*}
\max_u \{ & \mathbb{E}[w_T; s_0] - \lambda \cdot \text{wrCVaR}_{0,T}(-w_{1,T}; s_0), \\
\text{s.t.} \quad & w_0 = u_0^T e + \alpha^T (u_0)^+ + \beta^T (u_0)^-, \\
& w_t = u_t^T e + \alpha^T (u_t - u_{t-1})^+ + \beta^T (u_t - u_{t-1})^-, t = 1, \ldots, T - 1, \\
& w_{t+1} = u_t^T r_{t+1}, t = 0, \ldots, T - 1, \\
& \underline{u} \leq u_t \leq \bar{u}, t = 0, \ldots, T - 1,
\end{align*}
\]
We adopt a scenario tree to transform the mean-mwCVaR and mean-wrCVaR models.
We adopt a scenario tree to transform the mean-mwCVaR and mean-wrCVaR models.
Some notations:

- K^+: the set of all nodes at periods 1, 2, ... , T;
Mean-mwCVaR and mean-wrCVaR models (Cont’d)

Some notations:

- K^+: the set of all nodes at periods $1, 2, \cdots, T$;
- $N(K^+)$: the number of nodes in K^+;
Mean-mwCVaR and mean-wrCVaR models (Cont’d)

Some notations:

- K^+: the set of all nodes at periods $1, 2, \cdots, T$;
- $N(K^+)$: the number of nodes in K^+;
- K^-: the set of all nodes at periods $0, 1, \cdots, T - 1$;
Some notations:

- K^+: the set of all nodes at periods $1, 2, \cdots, T$;
- $N(K^+)$: the number of nodes in K^+;
- K^-: the set of all nodes at periods $0, 1, \cdots, T - 1$;
- $N(K^-)$: the number of nodes in K^-;
Some notations:

- K^+: the set of all nodes at periods $1, 2, \cdots, T$;
- $N(K^+)$: the number of nodes in K^+;
- K^-: the set of all nodes at periods $0, 1, \cdots, T - 1$;
- $N(K^-)$: the number of nodes in K^-;
- $t(k)$: the number of period of node k;
Mean-mwCVaR and mean-wrCVaR models (Cont’d)

Some notations:

- K^+: the set of all nodes at periods 1, 2, ⋅⋅⋅, T;
- $N(K^+)$: the number of nodes in K^+;
- K^-: the set of all nodes at periods 0, 1, ⋅⋅⋅, $T - 1$;
- $N(K^-)$: the number of nodes in K^-;
- $t(k)$: the number of period of node k;
- $s(k)$: the regime of node k;
Some notations:

- K^+: the set of all nodes at periods $1, 2, \cdots, T$;
- $N(K^+)$: the number of nodes in K^+;
- K^-: the set of all nodes at periods $0, 1, \cdots, T - 1$;
- $N(K^-)$: the number of nodes in K^-;
- $t(k)$: the number of period of node k;
- $s(k)$: the regime of node k;
- $Q(k; s_0)$: node k’s appearing probability in the tree.
For a node $k \in K^+$, the unique predecessor is denoted as k^-;
Mean-mwCVaR and mean-wrCVaR models (Cont’d)

- For a node \(k \in K^+ \), the unique predecessor is denoted as \(k^- \);
- \(\mu(k) \): the estimated expectation value of \(r_t \) at node \(k \);
Mean-mwCVaR and mean-wrCVaR models (Cont’d)

- For a node $k \in K^+$, the unique predecessor is denoted as k^-;
- $\mu(k)$: the estimated expectation value of r_t at node k;
- $\Gamma(k)$: the estimation value of the conditional covariance matrix;
Mean-mwCVaR and mean-wrCVaR models (Cont’d)

- For a node $k \in K^+$, the unique predecessor is denoted as k^-;
- $\mu(k)$: the estimated expectation value of r_t at node k;
- $\Gamma(k)$: the estimation value of the conditional covariance matrix;
- The uncertainty set with respect to the regime $s(k)$
For a node $k \in K^+$, the unique predecessor is denoted as k^-;

- $\mu(k)$: the estimated expectation value of r_t at node k;
- $\Gamma(k)$: the estimation value of the conditional covariance matrix;

The uncertainty set with respect to the regime $s(k)$

$$\mathcal{P}(k) = \left\{ P \left| \mathbb{E}_{P_{t-1}} [r_t | \mathcal{F}_{t-1}, s_t = s(k)] = \mu(k), \right. \right.$$

$$\left. \Gamma_{P_{t-1}} [r_t | \mathcal{F}_{t-1}, s_t = s(k)] = \Gamma(k) \right\}.$$
Under the scenario tree setting, the mean-mwCVaR model is equivalent to the following cone programming problem:
Under the scenario tree setting, the mean-mwCVaR model is equivalent to the following cone programming problem:

Object:
Mean-mwCVaR model (Cont’d)

Under the scenario tree setting, the mean-mwCVaR model is equivalent to the following cone programming problem:

Object:

$$
\max_{u, y, z, g, u^+, u^-} \left\{ (1 + \lambda)w_0 + \sum_{k \in K^+} (1 + (T - t(k^-) - 1)\lambda)Q(k; s_0)(\mu(k) - e)^T u(k^-) \\
- \lambda \sum_{k \in K^+} Q(k; s_0)y(k) - (1 + T\lambda)(\alpha^T u^+(0) + \beta^T u^-(0)) \\
- \sum_{k \in K^- \setminus \{0\}} (1 + (T - t(k))\lambda)[\alpha^T u^+(k) + \beta^T u^-(k)] \right\}
$$
Mean-mwCVaR model (Cont’d)

Constraints:
Mean-mwCVaR model (Cont’d)

Constraints:

\[
\begin{align*}
\Gamma^{1/2}(k)u(k^-) &= z(k), \quad k \in K^+,
\mu(k) - e)^\top u(k^-) + y(k) &= \kappa(k)g(k), \quad k \in K^+,
\|z(k)\|_2 &\leq g(k), \quad k \in K^+,
u(0) &= u^+(0) - u^-(0),
w_0 &= u(0)^\top e + \alpha^\top u^+(0) + \beta^\top u^-(0),
u(k) - u(k^-) &= u^+(k) - u^-(k), \quad k \in K^- \setminus \{0\},
u(k^-)^\top \mu(k) &= u(k)^\top e + \alpha^\top u^+(k) + \beta^\top u^-(k), \quad k \in K^- \setminus \{0\},
u^+(k), u^-(k) &\geq 0, \quad k \in K^-,\underline{u} &\leq u(k) \leq \bar{u}, \quad k \in K^-,
\end{align*}
\]
Mean-mwCVaR model (Cont’d)

Constraints:

\[\Gamma^{1/2}(k)u(k^-) = z(k), \ k \in K^+, \]
\[(\mu(k) - e)^\top u(k^-) + y(k) = \kappa(k)g(k), \ k \in K^+, \]
\[||z(k)||_2 \leq g(k), \ k \in K^+, \]
\[u(0) = u^+(0) - u^-(0), \]
\[w_0 = u(0)^\top e + \alpha^\top u^+(0) + \beta^\top u^-(0), \]
\[u(k) - u(k^-) = u^+(k) - u^-(k), \ k \in K^- \backslash \{0\}, \]
\[u(k^-)^\top \mu(k) = u(k)^\top e + \alpha^\top u^+(k) + \beta^\top u^-(k), \ k \in K^- \backslash \{0\}, \]
\[u^+(k), u^-(k) \geq 0, \ k \in K^-, \]
\[\underline{u} \leq u(k) \leq \overline{u}, \ k \in K^-, \]

The above SOCP has \((n + 2)N(K^+) + 3nN(K^-)\) variables, \((n + 1)N(K^+) + (n + 1)N(K^-)\) linear constraints and \(N(K^+)\) standard second order cone constraints.
Under the scenario tree setting, the mean-wrCVaR model is equivalent to the following cone programming problem:
Under the scenario tree setting, the mean-wrCVaR model is equivalent to the following cone programming problem:

Object:
Mean-wrCVaR model (Cont’d)

Under the scenario tree setting, the mean-wrCVaR model is equivalent to the following cone programming problem:

Object:

$$\min_{u, y, z, g, u^+, u^-} \left\{ (1 + \lambda)w_0 + \sum_{k \in K^+} (1 + (T - t(k) - 1)\lambda)Q(k; s_0)(\mu(k) - e)^T u(k^-) \right.$$

$$- \lambda \sum_{k \in K^-} Q(k; s_0)y(k) - (1 + T\lambda)(\alpha^T u^+(0) + \beta^T u^-(0))$$

$$+ \sum_{k \in K^- \setminus \{0\}} (1 + (T - t(k))\lambda)[\alpha^T u^+(k) + \beta^T u^-(k)] \right\}$$
Mean-wrCVaR model (Cont’d)

Constraints:
Constraints:

\[\Gamma^{1/2}(k)u(k^-) = z(k), \quad k \in K^+ , \]
\[(\mu(k) - e)^T u(k^-) + y(k^-) = \kappa(k)g(k), \quad k \in K^+ , \]
\[||z(k)||_2 \leq g(k), \quad k \in K^+ , \]
\[u(0) = u^+(0) - u^-(0), \]
\[w_0 = u(0)^T e + \alpha^T u^+(0) + \beta^T u^-(0), \]
\[u(k) - u(k^-) = u^+(k) - u^-(k), \quad k \in K^- \setminus \{0\}, \]
\[u(k^-)^T \mu(k) = u(k)^T e + \alpha^T u^+(k) + \beta^T u^-(k), \quad k \in K^- \setminus \{0\}, \]
\[u^+(k), u^-(k) \geq 0, \quad k \in K^- , \]
\[u^- \leq u(k) \leq \bar{u}, \quad k \in K^- , \]
Mean-wrCVaR model (Cont’d)

Constraints:

\[
\begin{align*}
\text{s.t.} \quad & \Gamma^{1/2}(k)u(k^-) = z(k), \ k \in K^+, \\
& (\mu(k) - e)^\top u(k^-) + y(k^-) = \kappa(k)g(k), \ k \in K^+, \\
& \|z(k)\|_2 \leq g(k), \ k \in K^+, \\
& u(0) = u^+(0) - u^-(0), \\
& w_0 = u(0)^\top e + \alpha^\top u^+(0) + \beta^\top u^-(0), \\
& u(k) - u(k^-) = u^+(k) - u^-(k), \ k \in K^- \setminus \{0\}, \\
& u(k^-)^\top \mu(k) = u(k)^\top e + \alpha^\top u^+(k) + \beta^\top u^-(k), \ k \in K^- \setminus \{0\}, \\
& u^+(k), u^-(k) \geq 0, \ k \in K^- , \\
& \underline{u} \leq u(k) \leq \bar{u}, \ k \in K^- ,
\end{align*}
\]

The above SOCP has \((n + 1)N(K^+) + (3n + 1)N(K^-)\) variables, \((n + 1)N(K^+) + (n + 1)N(K^-)\) linear constraints and \(N(K^+)\) standard second order cone constraints.
We compare the following three dynamic portfolio selection models:

- wCVaR: mean-wCVaR model
- MV: dynamic MV model in Li et al. (2000)
- LPM2: multistage portfolio selection model with robust second-order lower partial moment (LPM2) as the risk measure in Chen et al. (2011)

We simulated the models for 100 times. Use mean and variance in Example 2 of Li et al. (2000). Generate return rate samples by Gaussian Distribution. T = 4.
Simulation results

We compare the following three dynamic portfolio selection models

- **wCVaR**: mean-wCVaR model
Simulation results

We compare the following three dynamic portfolio selection models:

- \texttt{wCVaR}: mean-wCVaR model
- \texttt{MV}: dynamic MV model in Li et al. (2000)
Simulation results

We compare the following three dynamic portfolio selection models

- **wCVaR**: mean-wCVaR model
- **MV**: dynamic MV model in Li et al. (2000)
- **LPM2**: multistage portfolio selection model with robust second order lower partial moment (LPM2) as the risk measure in Chen et al. (2011)
Simulation results

We compare the following three dynamic portfolio selection models

- **wCVaR**: mean-wCVaR model
- **MV**: dynamic MV model in Li et al. (2000)
- **LPM2**: multistage portfolio selection model with robust second order lower partial moment (LPM2) as the risk measure in Chen et al. (2011)

We simulated the models for 100 times
Simulation results

We compare the following three dynamic portfolio selection models:

- \(\textbf{wCVaR} \): mean-wCVaR model
- \(\textbf{MV} \): dynamic MV model in Li et al. (2000)
- \(\textbf{LPM2} \): multistage portfolio selection model with robust second order lower partial moment (LPM2) as the risk measure in Chen et al. (2011)

We simulated the models for 100 times:

- Use mean and variance in Example 2 of Li et al. (2000)
We compare the following three dynamic portfolio selection models:

- **wCVaR**: mean-wCVaR model
- **MV**: dynamic MV model in Li et al. (2000)
- **LPM2**: multistage portfolio selection model with robust second order lower partial moment (LPM2) as the risk measure in Chen et al. (2011)

We simulated the models for 100 times:

- Use mean and variance in Example 2 of Li et al. (2000)
- Generate return rate samples by Gaussian Distribution
We compare the following three dynamic portfolio selection models

- **wCVaR**: mean-wCVaR model
- **MV**: dynamic MV model in Li et al. (2000)
- **LPM2**: multistage portfolio selection model with robust second order lower partial moment (LPM2) as the risk measure in Chen et al. (2011)

We simulated the models for 100 times

- Use mean and variance in Example 2 of Li et al. (2000)
- Generate return rate samples by Gaussian Distribution
- $T = 4$
Characteristics of the terminal wealths among 100 groups of samples
Characteristics of the terminal wealths among 100 groups of samples

<table>
<thead>
<tr>
<th></th>
<th>mean</th>
<th></th>
<th></th>
<th>wCVaR</th>
<th>MV</th>
<th>LPM2</th>
<th>variance</th>
<th>wCVaR</th>
<th>MV</th>
<th>LPM2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>wCVaR</td>
<td>MV</td>
<td>LPM2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>minimum</td>
<td>1.8387</td>
<td>-1.9208</td>
<td>1.1080</td>
<td>0.1628</td>
<td>160.7812</td>
<td>0.0792</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>maximum</td>
<td>2.1989</td>
<td>6.0885</td>
<td>1.2659</td>
<td>0.2793</td>
<td>1143.9345</td>
<td>0.3350</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>2.0184</td>
<td>1.8296</td>
<td>1.1875</td>
<td>0.2162</td>
<td>504.9351</td>
<td>0.1466</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simulation results (Cont’d)

- MV model gains high wealth under best cases, and suffers extreme large loss under worst cases.
Simulation results (Cont’d)

- MV model gains high wealth under best cases, and suffers extreme large loss under worst cases

- When the actual distribution has bias from Gaussian (extreme cases), MV model performs badly
Simulation results (Cont’d)

- MV model gains high wealth under best cases, and suffers extreme large loss under worst cases
- When the actual distribution has bias from Guassian (extreme cases), MV model performs badly
- Robust technique can efficiently reduce the expected wealth loss and investment risk under extreme cases
Simulation results (Cont’d)

- MV model gains high wealth under best cases, and suffers extreme large loss under worst cases.
- When the actual distribution has bias from Gaussian (extreme cases), MV model performs badly.
- Robust technique can efficiently reduce the expected wealth loss and investment risk under extreme cases.
- wCVaR model is not that extremely conservative as the LPM2 model, and it makes a good balance between providing a high terminal wealth and controlling the extreme risk.
Empirical results

Market setting (Dow Jones, S & P500)
Empirical results

Market setting (Dow Jones, S & P500)

- 10 stocks from different industries in American stock markets
Empirical results

Market setting (Dow Jones, S & P500)

- 10 stocks from different industries in American stock markets
- We use adjusted daily close-prices of these stocks on every Monday to compute their weekly logarithmic return rates from February 14, 1977 to January 30, 2012
Empirical results

Market setting (Dow Jones, S & P500)

- 10 stocks from different industries in American stock markets
- We use adjusted daily close-prices of these stocks on every Monday to compute their weekly logarithmic return rates from February 14, 1977 to January 30, 2012
- We divide the market into three regimes: the bull regime; the consolidation regime and the bear regime
Empirical results (Cont’d)

Determining regime (NYSF, AMEX, NASDAQ)

Use MKT - RF (Fama and French, 1993) to determine regime

Effective time window with 28 weeks, centered on the examining week

Add all MKT - RF in the effective time window and compare with pre-set benchmark

Sum larger than 1.0 ⇒ bull regime

Sum smaller than -1.0 ⇒ bear regime

Sum between -1.0 and 1.0 ⇒ consolidation regime
Determining regime (NYSF, AMEX, NASDAQ)

- Use MKT-RF (Fama and French, 1993) to determine regime
Determining regime (NYSF, AMEX, NASDAQ)

- Use MKT-RF (Fama and French, 1993) to determine regime
- Effective time window with 28 weeks, centered on the examining week
Empirical results (Cont’d)

Determining regime (NYSF, AMEX, NASDAQ)

- Use MKT-RF (Fama and French, 1993) to determine regime

- Effective time window with 28 weeks, centered on the examining week

- Add all MKT-RF in the effective time window and compare with pre-set benchmark
Empirical results (Cont’d)

Determining regime (NYSF, AMEX, NASDAQ)

- Use MKT-RF (Fama and French, 1993) to determine regime
- Effective time window with 28 weeks, centered on the examining week
- Add all MKT-RF in the effective time window and compare with pre-set benchmark
- Sum larger than 1.0 ⇒ bull regime
Determining regime (NYSF, AMEX, NASDAQ)

- Use MKT-RF (Fama and French, 1993) to determine regime

- Effective time window with 28 weeks, centered on the examining week

- Add all MKT-RF in the effective time window and compare with pre-set benchmark

- Sum larger than 1.0 ⇒ bull regime

- Sum smaller than -1.0 ⇒ bear regime
Determining regime (NYSF, AMEX, NASDAQ)

- Use MKT-RF (Fama and French, 1993) to determine regime
- Effective time window with 28 weeks, centered on the examining week
- Add all MKT-RF in the effective time window and compare with pre-set benchmark
 - Sum larger than 1.0 ⇒ bull regime
 - Sum smaller than -1.0 ⇒ bear regime
 - Sum between -1.0 and 1.0 ⇒ consolidation regime
Empirical results (Cont’d)

Estimating regime transition probability
Empirical results (Cont’d)

Estimating regime transition probability

Counting the relevant historical transition times
Estimating regime transition probability

Counting the relevant historical transition times

\[Q = \begin{bmatrix}
0.9475 & 0.0336 & 0.0189 \\
0.3333 & 0.3148 & 0.3519 \\
0.0471 & 0.0634 & 0.8895
\end{bmatrix}. \]
Empirical results (Cont’d)

Estimating regime transition probability

Counting the relevant historical transition times

\[Q = \begin{bmatrix}
0.9475 & 0.0336 & 0.0189 \\
0.3333 & 0.3148 & 0.3519 \\
0.0471 & 0.0634 & 0.8895 \\
\end{bmatrix}. \]

- Stable to stay in the bull or bear regime
Empirical results (Cont’d)

Estimating regime transition probability

Counting the relevant historical transition times

\[
Q = \begin{bmatrix}
0.9475 & 0.0336 & 0.0189 \\
0.3333 & 0.3148 & 0.3519 \\
0.0471 & 0.0634 & 0.8895 \\
\end{bmatrix}.
\]

- Stable to stay in the bull or bear regime
- High possibility to switch from the consolidation regime into the bull or bear regime
Empirical results (Cont’d)

Expected return rates (%) under different regimes

<table>
<thead>
<tr>
<th></th>
<th>DIS</th>
<th>DOW</th>
<th>ED</th>
<th>GE</th>
<th>IBM</th>
<th>MRK</th>
<th>MRO</th>
<th>MSI</th>
<th>PEP</th>
<th>JNJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu(s^1)$</td>
<td>0.2486</td>
<td>0.1845</td>
<td>0.1165</td>
<td>0.2260</td>
<td>0.1290</td>
<td>0.1884</td>
<td>0.1639</td>
<td>0.2291</td>
<td>0.1825</td>
<td>0.1511</td>
</tr>
<tr>
<td>$\mu(s^2)$</td>
<td>0.0206</td>
<td>-0.0116</td>
<td>0.1413</td>
<td>0.0110</td>
<td>-0.1879</td>
<td>0.1027</td>
<td>0.2251</td>
<td>0.0817</td>
<td>0.1653</td>
<td>0.1273</td>
</tr>
<tr>
<td>$\mu(s^3)$</td>
<td>-0.1921</td>
<td>-0.1583</td>
<td>0.0897</td>
<td>-0.1545</td>
<td>0.0035</td>
<td>-0.0691</td>
<td>-0.0274</td>
<td>-0.2706</td>
<td>-0.0199</td>
<td>0.0366</td>
</tr>
<tr>
<td>μ</td>
<td>0.1004</td>
<td>0.0681</td>
<td>0.1098</td>
<td>0.0970</td>
<td>0.0718</td>
<td>0.1046</td>
<td>0.1090</td>
<td>0.0676</td>
<td>0.1196</td>
<td>0.1147</td>
</tr>
</tbody>
</table>

Both first and second order moments have significant difference among different regimes. The estimated covariance matrices have the same feature.
Empirical results (Cont’d)

Expected return rates (%) under different regimes

<table>
<thead>
<tr>
<th></th>
<th>DIS</th>
<th>DOW</th>
<th>ED</th>
<th>GE</th>
<th>IBM</th>
<th>MRK</th>
<th>MRO</th>
<th>MSI</th>
<th>PEP</th>
<th>JNJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu(s^1)$</td>
<td>0.2486</td>
<td>0.1845</td>
<td>0.1165</td>
<td>0.2260</td>
<td>0.1290</td>
<td>0.1884</td>
<td>0.1639</td>
<td>0.2291</td>
<td>0.1825</td>
<td>0.1511</td>
</tr>
<tr>
<td>$\mu(s^2)$</td>
<td>0.0206</td>
<td>-0.0116</td>
<td>0.1413</td>
<td>0.0110</td>
<td>-0.1879</td>
<td>0.1027</td>
<td>0.2251</td>
<td>0.0817</td>
<td>0.1653</td>
<td>0.1273</td>
</tr>
<tr>
<td>$\mu(s^3)$</td>
<td>-0.1921</td>
<td>-0.1583</td>
<td>0.0897</td>
<td>-0.1545</td>
<td>0.0035</td>
<td>-0.0691</td>
<td>-0.0274</td>
<td>-0.2706</td>
<td>-0.0199</td>
<td>0.0366</td>
</tr>
<tr>
<td>μ</td>
<td>0.1004</td>
<td>0.0681</td>
<td>0.1098</td>
<td>0.0970</td>
<td>0.0718</td>
<td>0.1046</td>
<td>0.1090</td>
<td>0.0676</td>
<td>0.1196</td>
<td>0.1147</td>
</tr>
</tbody>
</table>

- Both first and second order moments have significant difference among different regimes.
Expected return rates (%) under different regimes

<table>
<thead>
<tr>
<th></th>
<th>DIS</th>
<th>DOW</th>
<th>ED</th>
<th>GE</th>
<th>IBM</th>
<th>MRK</th>
<th>MRO</th>
<th>MSI</th>
<th>PEP</th>
<th>JNJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu(s^1)$</td>
<td>0.2486</td>
<td>0.1845</td>
<td>0.1165</td>
<td>0.2260</td>
<td>0.1290</td>
<td>0.1884</td>
<td>0.1639</td>
<td>0.2291</td>
<td>0.1825</td>
<td>0.1511</td>
</tr>
<tr>
<td>$\mu(s^2)$</td>
<td>0.0206</td>
<td>-0.0116</td>
<td>0.1413</td>
<td>0.0110</td>
<td>-0.1879</td>
<td>0.1027</td>
<td>0.2251</td>
<td>0.0817</td>
<td>0.1653</td>
<td>0.1273</td>
</tr>
<tr>
<td>$\mu(s^3)$</td>
<td>-0.1921</td>
<td>-0.1583</td>
<td>0.0897</td>
<td>-0.1545</td>
<td>0.0035</td>
<td>-0.0691</td>
<td>-0.0274</td>
<td>-0.2706</td>
<td>-0.0199</td>
<td>0.0366</td>
</tr>
<tr>
<td>μ</td>
<td>0.1004</td>
<td>0.0681</td>
<td>0.1098</td>
<td>0.0970</td>
<td>0.0718</td>
<td>0.1046</td>
<td>0.1090</td>
<td>0.0676</td>
<td>0.1196</td>
<td>0.1147</td>
</tr>
</tbody>
</table>

- Both first and second order moments have significant difference among different regimes.
- The estimated covariance matrices have the same feature.
Find the optimal portfolios of mean-wCVaR mean-wrCVaR, mean-mwCVaR models by solving the SOCPs
Empirical results (Cont’d)

Find the optimal portfolios of mean-wCVaR mean-wrCVaR, mean-mwCVaR models by solving the SOCPs

Root optimal portfolios

<table>
<thead>
<tr>
<th></th>
<th>DIS</th>
<th>DOW</th>
<th>ED</th>
<th>GE</th>
<th>IBM</th>
<th>MRK</th>
<th>MRO</th>
<th>MSI</th>
<th>PEP</th>
<th>JNJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u_{wCVaR}^*(s_0)$</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.2995</td>
<td>0.1005</td>
<td></td>
</tr>
<tr>
<td>$u_{wrCVaR}^*(s_0)$</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1367</td>
<td>0.2633</td>
<td></td>
</tr>
<tr>
<td>$u_{mwCVaR}^*(s_0 = s^1)$</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.1385</td>
<td>0.0000</td>
<td>0.2615</td>
<td>0.0000</td>
</tr>
<tr>
<td>$u_{mwCVaR}^*(s_0 = s^2)$</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0450</td>
</tr>
<tr>
<td>$u_{mwCVaR}^*(s_0 = s^3)$</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1492</td>
<td>0.2508</td>
<td></td>
</tr>
</tbody>
</table>
Empirical results (Cont’d)

Find the optimal portfolios of mean-wCVaR mean-wrCVaR, mean-mwCVaR models by solving the SOCPs

Root optimal portfolios

<table>
<thead>
<tr>
<th></th>
<th>DIS</th>
<th>DOW</th>
<th>ED</th>
<th>GE</th>
<th>IBM</th>
<th>MRK</th>
<th>MRO</th>
<th>MSI</th>
<th>PEP</th>
<th>JNJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$u^*_{wCVaR}(s_0)$</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1005</td>
<td>0.2995</td>
<td></td>
</tr>
<tr>
<td>$u^*_{wrCVaR}(s_0)$</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1367</td>
<td>0.2633</td>
<td></td>
</tr>
<tr>
<td>$u^*_{mwCVaR}(s_0 = s^1)$</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.1385</td>
<td>0.0000</td>
<td>0.2615</td>
<td>0.0000</td>
</tr>
<tr>
<td>$u^*_{mwCVaR}(s_0 = s^2)$</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.0550</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0450</td>
</tr>
<tr>
<td>$u^*_{mwCVaR}(s_0 = s^3)$</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.3000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.1492</td>
<td>0.2508</td>
</tr>
</tbody>
</table>

$\epsilon_t(s_t) = 0.05$, $\lambda = 20$, $\underline{u} = 0$, $\overline{u} = 0.3$.
Both the optimal portfolios of mean-wVaR model and mean-wrVaR model do not rely on the current regime.
Empirical results (Cont’d)

- Both the optimal portfolios of mean-wVaR model and mean-wrVaR model do not rely on the current regime.

- The mean-mwVaR model provides us with three optimal portfolios under three different regimes.
Empirical results (Cont’d)

- Both the optimal portfolios of mean-wVaR model and mean-wrVaR model do not rely on the current regime.

- The mean-mwVaR model provides us with three optimal portfolios under three different regimes.

- That is because the estimation of mwVaR relies on the regime appearing probability in the future.
Empirical results (Cont’d)

- Both the optimal portfolios of mean-wVaR model and mean-wrVaR model do not rely on the current regime.

- The mean-mwVaR model provides us with three optimal portfolios under three different regimes.

- That is because the estimation of mwVaR relies on the regime appearing probability in the future.

- The strategy derived under regime-dependent robust models reveals more information about market regimes than the traditional worst-case risk measures.
Out-of-sample test

In-sample period
Out-of-sample test

In-sample period

Out-of-sample test

In-sample period

Out-of-sample period
Out-of-sample test

In-sample period

Out-of-sample period

Out-of-sample test

In-sample period

Out-of-sample period

Rolling forward weekly
Out-of-sample test

In-sample period

Out-of-sample period

Rolling forward weekly

- 100 out-of-sample weekly return rates
Out-of-sample performances

We carry out the out-of-sample test by rolling forward for 100 weeks, this provides us three out-of-sample accumulated wealth series.
We carry out the out-of-sample test by rolling forward for 100 weeks, this provides us three out-of-sample accumulated wealth series.
Out-of-sample performances (Cont’d)

Statistics of out-of-sample performances

<table>
<thead>
<tr>
<th>model</th>
<th>mean-wCVaR</th>
<th>mean-wrCVaR</th>
<th>mean-mwCVaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum (%)</td>
<td>1.1020</td>
<td>1.0683</td>
<td>1.2713</td>
</tr>
<tr>
<td>minimum (%)</td>
<td>-1.4588</td>
<td>-1.4586</td>
<td>-1.2030</td>
</tr>
<tr>
<td>mean (%)</td>
<td>0.1229</td>
<td>0.1234</td>
<td>0.1627</td>
</tr>
<tr>
<td>variance (×1.0e-4)</td>
<td>0.2639</td>
<td>0.2688</td>
<td>0.2957</td>
</tr>
<tr>
<td>skewness</td>
<td>-0.4449</td>
<td>-0.4343</td>
<td>-0.1873</td>
</tr>
</tbody>
</table>

Mean-wCVaR and mean-wrCVaR models have similar performance. Mean-mwCVaR model provides much higher return rate than the other two in terms of the maximum and mean.
Out-of-sample performances (Cont’d)

Statistics of out-of-sample performances

<table>
<thead>
<tr>
<th>model</th>
<th>mean-wCVaR</th>
<th>mean-wrCVaR</th>
<th>mean-mwCVaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum (%)</td>
<td>1.1020</td>
<td>1.0683</td>
<td>1.2713</td>
</tr>
<tr>
<td>minimum (%)</td>
<td>-1.4588</td>
<td>-1.4586</td>
<td>-1.2030</td>
</tr>
<tr>
<td>mean (%)</td>
<td>0.1229</td>
<td>0.1234</td>
<td>0.1627</td>
</tr>
<tr>
<td>variance (×1.0e-4)</td>
<td>0.2639</td>
<td>0.2688</td>
<td>0.2957</td>
</tr>
<tr>
<td>skewness</td>
<td>-0.4449</td>
<td>-0.4343</td>
<td>-0.1873</td>
</tr>
</tbody>
</table>

- Mean-wCVaR and mean-wrCVaR models have similar performance
Out-of-sample performances (Cont’d)

Statistics of out-of-sample performances

<table>
<thead>
<tr>
<th>model</th>
<th>mean-wCVaR</th>
<th>mean-wrCVaR</th>
<th>mean-mwCVaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>maximum (%)</td>
<td>1.1020</td>
<td>1.0683</td>
<td>1.2713</td>
</tr>
<tr>
<td>minimum (%)</td>
<td>-1.4588</td>
<td>-1.4586</td>
<td>-1.2030</td>
</tr>
<tr>
<td>mean (%)</td>
<td>0.1229</td>
<td>0.1234</td>
<td>0.1627</td>
</tr>
<tr>
<td>variance (×1.0e-4)</td>
<td>0.2639</td>
<td>0.2688</td>
<td>0.2957</td>
</tr>
<tr>
<td>skewness</td>
<td>-0.4449</td>
<td>-0.4343</td>
<td>-0.1873</td>
</tr>
</tbody>
</table>

- Mean-wCVaR and mean-wrCVaR models have similar performance.
- Mean-mwCVaR model provides much higher return rate than the other two in terms of the maximum and mean.
<table>
<thead>
<tr>
<th>model</th>
<th>regime</th>
<th>bull</th>
<th>consolidation</th>
<th>bear</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean-wCVaR</td>
<td>mean (%)</td>
<td>0.1421</td>
<td>0.2729</td>
<td>0.0339</td>
</tr>
<tr>
<td></td>
<td>variance (×1.0e-4)</td>
<td>0.2455</td>
<td>0.3133</td>
<td>0.3129</td>
</tr>
<tr>
<td>mean-wrCVaR</td>
<td>mean (%)</td>
<td>0.1370</td>
<td>0.2401</td>
<td>0.0579</td>
</tr>
<tr>
<td></td>
<td>variance (×1.0e-4)</td>
<td>0.2542</td>
<td>0.3230</td>
<td>0.3129</td>
</tr>
<tr>
<td>mean-mwCVaR</td>
<td>mean (%)</td>
<td>0.1938</td>
<td>0.2588</td>
<td>0.0535</td>
</tr>
<tr>
<td></td>
<td>variance (×1.0e-4)</td>
<td>0.2902</td>
<td>0.3421</td>
<td>0.3087</td>
</tr>
</tbody>
</table>

Under consolidation market: All three are similar
Under bear market: mean-wrCVaR is best
Under bull market: mean-mwCVaR is best
Out-of-sample performances under different regimes

<table>
<thead>
<tr>
<th>model</th>
<th>regime</th>
<th>bull</th>
<th>consolidation</th>
<th>bear</th>
</tr>
</thead>
<tbody>
<tr>
<td>mean-wCVaR</td>
<td>weight (weeks)</td>
<td>69</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>mean (%)</td>
<td>0.1421</td>
<td>0.2729</td>
<td>0.0339</td>
</tr>
<tr>
<td></td>
<td>variance (×1.0e-4)</td>
<td>0.2455</td>
<td>0.3133</td>
<td>0.3129</td>
</tr>
<tr>
<td>mean-wrCVaR</td>
<td>mean (%)</td>
<td>0.1370</td>
<td>0.2401</td>
<td>0.0579</td>
</tr>
<tr>
<td></td>
<td>variance (×1.0e-4)</td>
<td>0.2542</td>
<td>0.3230</td>
<td>0.3129</td>
</tr>
<tr>
<td>mean-mwCVaR</td>
<td>mean (%)</td>
<td>0.1938</td>
<td>0.2588</td>
<td>0.0535</td>
</tr>
<tr>
<td></td>
<td>variance (×1.0e-4)</td>
<td>0.2902</td>
<td>0.3421</td>
<td>0.3087</td>
</tr>
</tbody>
</table>

- Under consolidation market: All three are similar
Out-of-sample performances under different regimes

<table>
<thead>
<tr>
<th>model</th>
<th>regime</th>
<th>bull</th>
<th>consolidation</th>
<th>bear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>weight (weeks)</td>
<td>69</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>mean-wCVaR</td>
<td>mean (%)</td>
<td>0.1421</td>
<td>0.2729</td>
<td>0.0339</td>
</tr>
<tr>
<td></td>
<td>variance (×1.0e-4)</td>
<td>0.2455</td>
<td>0.3133</td>
<td>0.3129</td>
</tr>
<tr>
<td>mean-wrCVaR</td>
<td>mean (%)</td>
<td>0.1370</td>
<td>0.2401</td>
<td>0.0579</td>
</tr>
<tr>
<td></td>
<td>variance (×1.0e-4)</td>
<td>0.2542</td>
<td>0.3230</td>
<td>0.3129</td>
</tr>
<tr>
<td>mean-mwCVaR</td>
<td>mean (%)</td>
<td>0.1938</td>
<td>0.2588</td>
<td>0.0535</td>
</tr>
<tr>
<td></td>
<td>variance (×1.0e-4)</td>
<td>0.2902</td>
<td>0.3421</td>
<td>0.3087</td>
</tr>
</tbody>
</table>

- Under consolidation market: All three are similar
- Under bear market: **mean-wrCVaR is best**
Out-of-sample performances under different regimes

<table>
<thead>
<tr>
<th>model</th>
<th>regime</th>
<th>bull</th>
<th>consolidation</th>
<th>bear</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>weight (weeks)</td>
<td>69</td>
<td>6</td>
<td>25</td>
</tr>
<tr>
<td>mean-wCVaR</td>
<td>mean (%)</td>
<td>0.1421</td>
<td>0.2729</td>
<td>0.0339</td>
</tr>
<tr>
<td></td>
<td>variance (×1.0e-4)</td>
<td>0.2455</td>
<td>0.3133</td>
<td>0.3129</td>
</tr>
<tr>
<td>mean-wrCVaR</td>
<td>mean (%)</td>
<td>0.1370</td>
<td>0.2401</td>
<td>0.0579</td>
</tr>
<tr>
<td></td>
<td>variance (×1.0e-4)</td>
<td>0.2542</td>
<td>0.3230</td>
<td>0.3129</td>
</tr>
<tr>
<td>mean-mwCVaR</td>
<td>mean (%)</td>
<td>0.1938</td>
<td>0.2588</td>
<td>0.0535</td>
</tr>
<tr>
<td></td>
<td>variance (×1.0e-4)</td>
<td>0.2902</td>
<td>0.3421</td>
<td>0.3087</td>
</tr>
</tbody>
</table>

- Under consolidation market: All three are similar
- Under bear market: mean-wrCVaR is best
- Under bull market: mean-mwCVaR is best
Different sizes of stock pools:

1. 10 stocks from Dow Jones IA, S & P 500
2. 50 stocks from S & P 500
3. 100 stocks from S & P 500

Adjusted daily close-prices to compute their daily logarithmic return rates from March 20, 2011 to March 3, 2015.
Different sizes of stock pools:

- 10 stocks from Dow Jones IA, S & P 500

Adjusted daily close-prices to compute their daily logarithmic return rates from March 20, 2011 to March 3, 2015.
Different sizes of stock pools:

- 10 stocks from Dow Jones IA, S & P 500
- 50 stocks from S & P 500 ⊃ “10 stocks”

Adj usted daily close-prices to compute their daily logarithmic return rates from March 20, 2011 to March 3, 2015.
Different sizes of stock pools:

- 10 stocks from Dow Jones IA, S & P 500
- 50 stocks from S & P 500 ⊃ “10 stocks”
- 100 stocks from S & P 500 ⊃ “50 stocks”
Different sizes of stock pools:

- 10 stocks from Dow Jones IA, S & P 500
- 50 stocks from S & P 500 ⊃ “10 stocks”
- 100 stocks from S & P 500 ⊃ “50 stocks”
- Adjusted daily close-prices to compute their daily logarithmic return rates from March 20, 2011 to March 3, 2015
Separate the historical daily data into:
Different sizes of stock pools

Separate the historical daily data into:

- The in-sample period: March 20, 2011 to October 7, 2014
Separate the historical daily data into:

- The in-sample period: March 20, 2011 to October 7, 2014
Different sizes of stock pools

Separate the historical daily data into:

- The in-sample period: March 20, 2011 to October 7, 2014

Divide the market into three regimes:
Separate the historical daily data into:

- The in-sample period: March 20, 2011 to October 7, 2014

Divide the market into three regimes:

- Using the effective time window method stated above
Different sizes of stock pools

Separate the historical daily data into:

- The in-sample period: March 20, 2011 to October 7, 2014

Divide the market into three regimes:

- Using the effective time window method stated above
- In the out-of-sample period:
Different sizes of stock pools

Separate the historical daily data into:

- The in-sample period: March 20, 2011 to October 7, 2014

Divide the market into three regimes:

- Using the effective time window method stated above
- In the out-of-sample period:
 - Bull regime: 68 days
Different sizes of stock pools

Separate the historical daily data into:

- The in-sample period: March 20, 2011 to October 7, 2014

Divide the market into three regimes:

- Using the effective time window method stated above
- In the out-of-sample period:
 - Bull regime: 68 days
 - Consolidation regime: 15 days
Separate the historical daily data into:

- The in-sample period: March 20, 2011 to October 7, 2014

Divide the market into three regimes:

- Using the effective time window method stated above
- In the out-of-sample period:
 - Bull regime: 68 days
 - Consolidation regime: 15 days
 - Bear regime: 17 days
Different sizes of stock pools

Statistics of out-of-sample return series got under three models with different stocks pools

<table>
<thead>
<tr>
<th>mean-wCVaR</th>
<th>10 stocks</th>
<th>50 stocks</th>
<th>100 stocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean (%)</td>
<td>0.0331</td>
<td>0.0473</td>
<td>0.0771</td>
</tr>
<tr>
<td>variance (×10e-4)</td>
<td>0.608</td>
<td>0.639</td>
<td>0.728</td>
</tr>
<tr>
<td>bull</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean (%)</td>
<td>0.001</td>
<td>-0.0483</td>
<td>-0.0494</td>
</tr>
<tr>
<td>variance (×10e-4)</td>
<td>0.5415</td>
<td>0.7933</td>
<td>1.2447</td>
</tr>
<tr>
<td>consolidation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean (%)</td>
<td>0.5026</td>
<td>0.528</td>
<td>0.5006</td>
</tr>
<tr>
<td>variance (×10e-4)</td>
<td>0.4668</td>
<td>0.3368</td>
<td>0.4225</td>
</tr>
<tr>
<td>bear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean (%)</td>
<td>-0.2565</td>
<td>0.0006</td>
<td>0.1164</td>
</tr>
<tr>
<td>variance (×10e-4)</td>
<td>0.8118</td>
<td>0.7361</td>
<td>1.0421</td>
</tr>
</tbody>
</table>
Different sizes of stock pools

Statistics of out-of-sample return series got under three models with different stocks pools

<table>
<thead>
<tr>
<th>mean-wrCVaR</th>
<th>10 stocks</th>
<th>50 stocks</th>
<th>100 stocks</th>
</tr>
</thead>
<tbody>
<tr>
<td>total</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean (%)</td>
<td>0.0324</td>
<td>0.0465</td>
<td>0.0613</td>
</tr>
<tr>
<td>variance (×10e-4)</td>
<td>0.612</td>
<td>0.745</td>
<td>1.109</td>
</tr>
<tr>
<td>bull</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean (%)</td>
<td>0.0001</td>
<td>-0.0321</td>
<td>0.0585</td>
</tr>
<tr>
<td>variance (×10e-4)</td>
<td>0.5227</td>
<td>0.6859</td>
<td>0.742</td>
</tr>
<tr>
<td>consolidation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean (%)</td>
<td>0.5029</td>
<td>0.5256</td>
<td>0.5306</td>
</tr>
<tr>
<td>variance (×10e-4)</td>
<td>0.5068</td>
<td>0.3517</td>
<td>0.6414</td>
</tr>
<tr>
<td>bear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mean (%)</td>
<td>-0.2492</td>
<td>-0.0572</td>
<td>-0.2489</td>
</tr>
<tr>
<td>variance (×10e-4)</td>
<td>0.8339</td>
<td>0.5223</td>
<td>0.5315</td>
</tr>
</tbody>
</table>
Statistics of out-of-sample return series got under three models with different stocks pools

<table>
<thead>
<tr>
<th></th>
<th>mean-mwCVaR</th>
<th>10 stocks</th>
<th>50 stocks</th>
<th>100 stocks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean (%)</td>
<td>0.0370</td>
<td>0.0817</td>
<td>0.0855</td>
</tr>
<tr>
<td></td>
<td>variance (×10e-4)</td>
<td>0.621</td>
<td>0.739</td>
<td>1.072</td>
</tr>
<tr>
<td>total</td>
<td>mean (%)</td>
<td>0.0078</td>
<td>0.006</td>
<td>-0.0143</td>
</tr>
<tr>
<td></td>
<td>variance (×10e-4)</td>
<td>0.5522</td>
<td>0.7751</td>
<td>1.1805</td>
</tr>
<tr>
<td>bull</td>
<td>mean (%)</td>
<td>0.4995</td>
<td>0.535</td>
<td>0.5345</td>
</tr>
<tr>
<td></td>
<td>variance (×10e-4)</td>
<td>0.4839</td>
<td>0.4224</td>
<td>0.4313</td>
</tr>
<tr>
<td>consolidation</td>
<td>mean (%)</td>
<td>-0.2545</td>
<td>-0.0154</td>
<td>0.0885</td>
</tr>
<tr>
<td></td>
<td>variance (×10e-4)</td>
<td>0.8125</td>
<td>0.7317</td>
<td>1.0806</td>
</tr>
<tr>
<td>bear</td>
<td>mean (%)</td>
<td>0.4995</td>
<td>0.535</td>
<td>0.5345</td>
</tr>
<tr>
<td></td>
<td>variance (×10e-4)</td>
<td>0.4839</td>
<td>0.4224</td>
<td>0.4313</td>
</tr>
</tbody>
</table>
Different sizes of stock pools

- The solution times for the encountered SOCP problems with 10 stocks are between 0.42 seconds and 0.55 seconds;
Different sizes of stock pools

- The solution times for the encountered SOCP problems with 10 stocks are between 0.42 seconds and 0.55 seconds;
- The solution times for the encountered SOCP problems with 50 stocks are between 0.45 seconds and 1.59 seconds;
Different sizes of stock pools

- The solution times for the encountered SOCP problems with 10 stocks are between 0.42 seconds and 0.55 seconds;

- The solution times for the encountered SOCP problems with 50 stocks are between 0.45 seconds and 1.59 seconds;

- The solution times for the encountered SOCP problems with 100 stocks are between 0.55 seconds and 7.60 seconds.
The out-of-sample accumulative wealth series got under the mean-wCVaR model
The out-of-sample accumulative wealth series got under the mean-wrCVaR model
The out-of-sample accumulative wealth series got under the mean-mwCVaR model.
Different sizes of stock pools

- The mean-mwCVaR model constantly provides much greater return rate than the other two models, independently of the three stock pools.
Different sizes of stock pools

- The mean-mwCVaR model constantly provides much greater return rate than the other two models, independently of the three stock pools.

- The mean-wrCVaR model always makes the most powerful control of risk under the worst regime.
Different sizes of stock pools

- The mean-mwCVaR model constantly provides much greater return rate than the other two models, independently of the three stock pools.

- The mean-wrCVaR model always makes the most powerful control of risk under the worst regime.

- As the size of the stock pool becomes larger and larger, the out-of-sample return rates got under the three models generally become greater too.
Different sizes of stock pools

When the market is:

Under the bull regime, the portfolio selection models with a smaller stock pool perform better;
Under the consolidation regime, the performance of the portfolio selection models with a smaller stock pool is similar to that of the portfolio selection models with a larger stock pool;
Under the bear regime, the portfolio selection models with a larger stock pool significantly perform better.
Different sizes of stock pools

When the market is:

- Under the bull regime, the portfolio selection models with a smaller stock pool perform better;
When the market is:

- Under the bull regime, the portfolio selection models with a smaller stock pool perform better;

- Under the consolidation regime, the performance of the portfolio selection models with a smaller stock pool is similar to that of the portfolio selection models with a larger stock pool;
When the market is:

- Under the bull regime, the portfolio selection models with a smaller stock pool perform better;

- Under the consolidation regime, the performance of the portfolio selection models with a smaller stock pool is similar to that of the portfolio selection models with a larger stock pool;

- Under the bear regime, the portfolio selection models with a larger stock pool significantly perform better.
During a medium-term or long-term real investment process:

- When the investor finds that the market is constantly going high, he/she can focus on the best performing stocks and balance his/her investment among them;
- When he/she finds that the market is turning down, the investor should diversify his/her investment in more assets even if the performance of some assets is not so good as the best performing stocks temporarily;
- Enlarging the stock pool and adopting the multi-period robust portfolio selection model can efficiently avoid the large risks which the investor may suffer under bad market regimes.
Different sizes of stock pools

During a medium-term or long-term real investment process:

- When the investor finds that the market is constantly going high, he/she can focus on the best performing stocks and balance his/her investment among them;
Different sizes of stock pools

During a medium-term or long-term real investment process:

- When the investor finds that the market is constantly going high, he/she can focus on the best performing stocks and balance his/her investment among them;

- When he/she finds that the market is turning down, the investor should diversify his/her investment in more assets even if the performance of some assets is not so good as the best performing stocks temporarily;
During a medium-term or long-term real investment process:

- When the investor finds that the market is constantly going high, he/she can focus on the best performing stocks and balance his/her investment among them;

- When he/she finds that the market is turning down, the investor should diversify his/her investment in more assets even if the performance of some assets is not so good as the best performing stocks temporarily;

- Enlarging the stock pool and adopting the multi-period robust portfolio selection model can efficiently avoid the large risks which the investor may suffer under bad market regimes.
Conclusions

- We propose in this paper a multi-period worst-case risk measure, which measures the dynamic risk period-wise from a distributionally robust perspective.
We propose in this paper a multi-period worst-case risk measure, which measures the dynamic risk period-wise from a distributionally robust perspective.

We apply CVaR to construct multi-stage robust portfolio selection models and show that they can be solved analytically.
We propose in this paper a multi-period worst-case risk measure, which measures the dynamic risk period-wise from a distributionally robust perspective.

We apply CVaR to construct multi-stage robust portfolio selection models and show that they can be solved analytically.

We further propose two multi-period robust risk measures under the regime switching framework.
Conclusions

- We propose in this paper a multi-period worst-case risk measure, which measures the dynamic risk period-wise from a distributionally robust perspective.

- We apply CVaR to construct multi-stage robust portfolio selection models and show that they can be solved analytically.

- We further propose two multi-period robust risk measures under the regime switching framework.

- With scenario tree technique, we solve the multi-period robust portfolio selection problem with regime switching by SOCP.
Conclusions

We propose in this paper a multi-period worst-case risk measure, which measures the dynamic risk period-wise from a distributionally robust perspective.

We apply CVaR to construct multi-stage robust portfolio selection models and show that they can be solved analytically.

We further propose two multi-period robust risk measures under the regime switching framework.

With scenario tree technique, we solve the multi-period robust portfolio selection problem with regime switching by SOCP.

Numerical results demonstrate the efficiency and flexibility of the proposed models.
Thank You Very Much for Your Attention!