Price Competition Under Product Differentiation

Introduction

- In a wide variety of markets firms compete in prices
 - Internet access
 - Restaurants
 - Consultants
 - Financial services
- Without product differentiation competing in prices yields negative consequences for firms with market power
 - The Bertrand Paradox
- However, firms usually compete on product location and prices
- Hence we consider product differentiation under oligopoly
The Bertrand Paradox

- Take a simple example
 - two firms producing an identical product (spring water?)
 - firms choose the prices at which they sell their products
 - each firm has constant marginal cost of c
 - inverse demand is $P = A - BQ$
- Equilibrium is such that
 - $p_1 = p_2 = c$
 - Both firms make normal profits

Product differentiation

- The Bertrand Paradox is due to homogeneous products
- It creates incentives for firms to differentiate their products
 - to generate consumer loyalty
 - do not lose all demand when they price above their rivals
 - keep the “most loyal”
An example of product differentiation

Coke and Pepsi are similar but not identical. As a result, the lower priced product does not win the entire market. Econometric estimation gives:

\[Q_C = 63.42 - 3.98P_C + 2.25P_P \]
\[MC_C = 4.96 \]
\[Q_P = 49.52 - 5.48P_P + 1.40P_C \]
\[MC_P = 3.96 \]

There are at least two methods for solving this for \(P_C \) and \(P_P \)

Bertrand and product differentiation

Method 1: Calculus

Profit of Coke: \(\pi_C = (P_C - 4.96)(63.42 - 3.98P_C + 2.25P_P) \)

Profit of Pepsi: \(\pi_P = (P_P - 3.96)(49.52 - 5.48P_P + 1.40P_C) \)

Differentiate with respect to \(P_C \) and \(P_P \) respectively

Method 2: \(MR = MC \)

Reorganize the demand functions

\[P_C = (15.93 + 0.57P_P) - 0.25Q_C \]
\[P_P = (9.04 + 0.26P_C) - 0.18Q_P \]

Calculate marginal revenue, equate to marginal cost, solve for \(Q_C \) and \(Q_P \) and substitute in the demand functions
Chapter 10: Price Competition

Bertrand and product differentiation

Both methods give the best response functions:

\[P_C = 10.44 + 0.2826P_P \]
\[P_P = 6.49 + 0.1277P_C \]

These can be solved for the equilibrium prices as indicated.

The equilibrium prices are each greater than marginal cost.

Bertrand competition and the spatial model

- An alternative approach: spatial model of Hotelling
 - a Main Street over which consumers are distributed
 - supplied by two shops located at opposite ends of the street
 - but now the shops are competitors
 - each consumer buys exactly one unit of the good provided that its full price is less than \(V \)
 - a consumer buys from the shop offering the lower full price
 - consumers incur transport costs of \(t \) per unit distance in travelling to a shop

- Recall the broader interpretation
- What prices will the two shops charge?
Chapter 10: Price Competition

Bertrand and the spatial model

Assume that shop 1 sets price p_1 and shop 2 sets price p_2

Price

p_1

p_2

x_m marks the location of the marginal buyer—one who is indifferent between buying either firm’s good

All consumers to the left of x_m buy from shop 1

And all consumers to the right buy from shop 2

What if shop 1 raises its price?

x_m moves to the left: some consumers switch to shop 2

p_1'

p_1

x_m'

x_m

Shop 1

Shop 2
Chapter 10: Price Competition

Bertrand and the spatial model

\[p_1 + tx^m = p_2 + t(1 - x^m) \]

\[\therefore 2tx^m = p_2 - p_1 + t \]

\[\therefore x^m(p_1, p_2) = (p_2 - p_1 + t)/2t \]

How is \(x^m \) determined?

There are \(N \) consumers in total.

So demand to firm 1 is \(D^1 = N(p_2 - p_1 + t)/2t \).

\[\text{This is the fraction of consumers who buy from firm 1.} \]

Demand to firm 1 is

\[D_1 = \frac{N(p_2 - p_1 + t)}{2t} \]

There are \(N \) consumers in total.

So demand to firm 1 is \(D^1 = N(p_2 - p_1 + t)/2t \).

\[\text{This is the fraction of consumers who buy from firm 1.} \]

Chapter 10: Price Competition

Bertrand equilibrium

Profit to firm 1 is \(\pi_1 = (p_1 - c)D^1 = N(p_1 - c)(p_2 - p_1 + t)/2t \)

\[\pi_1 = N(p_2p_1 - p_1^2 + tp_1 + cp_1 - cp_2 - ct)/2t \]

Differentiate with respect to \(p_1 \)

\[\frac{\partial \pi_1}{\partial p_1} = \frac{N}{2t} (p_2 - 2p_1 + t + c) = 0 \]

\[p^*_1 = (p_2 + t + c)/2 \]

This is the best response function for firm 1.

What about firm 2? By symmetry, it has a similar best response function.

\[p^*_2 = (p_1 + t + c)/2 \]

This is the best response function for firm 2.
Chapter 10: Price Competition 13

Bertrand equilibrium 2

\[p_{*1} = \frac{(p_2 + t + c)}{2} \]
\[p_{*2} = \frac{(p_1 + t + c)}{2} \]
\[2p_{*2} = p_1 + t + c \]
\[= \frac{p_2}{2} + \frac{3(t + c)}{2} \]
\[\therefore p_{*2} = t + c \]
\[\therefore p_{*1} = t + c \]

Profit per unit to each firm is \(t \)
Aggregate profit to each firm is \(Nt/2 \)

Chapter 10: Price Competition 14

Bertrand competition 3

- Two final points on this analysis
- \(t \) is a measure of transport costs
 - it is also a measure of the value consumers place on getting their most preferred variety
 - when \(t \) is large competition is softened
 - and profit is increased
 - when \(t \) is small competition is tougher
 - and profit is decreased
- Locations have been taken as fixed
 - suppose product design can be set by the firms
 - balance “business stealing” temptation to be close
 - against “competition softening” desire to be separate
Strategic complements and substitutes

- Best response functions are very different with Cournot and Bertrand
 - they have opposite slopes
 - reflects very different forms of competition
 - firms react differently e.g. to an increase in costs

Strategic complements and substitutes

- suppose firm 2’s costs increase
- this causes Firm 2’s Cournot best response function to fall
 - at any output for firm 1 firm 2 now wants to produce less
 - firm 1’s output increases and firm 2’s falls
- Firm 2’s Bertrand best response function rises
 - at any price for firm 1 firm 2 now wants to raise its price
 - firm 1’s price increases as does firm 2’s
Strategic complements and substitutes 2

- When best response functions are upward sloping (e.g. Bertrand) we have strategic complements
 - passive action induces passive response
- When best response functions are downward sloping (e.g. Cournot) we have strategic substitutes
 - passive actions induces aggressive response
- Difficult to determine strategic choice variable: price or quantity
 - output in advance of sale – probably quantity
 - production schedules easily changed and intense competition for customers – probably price